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Christophe Grojean Higgs@Future Colliders WG EF01 kickoff, May 13, 20203

European Strategy Update

May.2020 
Council to approve 
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Sept 27,2018 
Council launches the 

Strategy Update process & 
establish the PPG and ESG 

June 14,2018 
Council decision on 

venues and dates  

March.2018 
Call for nominations of 
PPG & ESG members March.2020 

Strategy Update 
submitted to Council 

Jan 20-24,2020 
Strategy Update 
Drafting Session 
Bad Honnef, DE 

Sept.2019 
Physics Briefing 

Book available 

May 13-16,2019 
Open Symposium 

Granada, ES 

Jan.2018 
Call for proposals 

for venues for Open 
Symposium and 

Strategy Drafting 
Session 

2017 2018 2019 2020 

Dec 18.2018 
Closing submission 

community input 

Physics results appearing 
after May 2019 will be taken 
into account in the process 

European)Par+cle)Physics)Strategy)Update'

Febr.2018 
Call for scientific input 

! ))
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A bottom-up process
to pave the near-term, mid-term and longer-term future

Draft is still confidential

Budapest meeting (25.05) 

has been postponed

(only remote council meeting)

No official timeline for release
Draft still confidential 

No official timeline for 
release

European Strategy for Particle Physics: the cornerstone of  
Europe’s decision-making process for the long-term future of the field
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• Different Working Groups formed to assist the Physics Preparatory Group 
(PPG) in evaluating the physics potential of the different future 
experimental projects in different areas: Higgs/EW, Strong Interactions, 
BSM, … 


• The Higgs@Future Colliders WG was formed by RECFA for this purpose, 
to help in areas related to Higgs physics:

December'19th,'2018' Higgs@FutureColliders' 6'

Mandate'agreed'by'RECFA'in'consulta<on'with'the'PPG'
“Higgs'physics'with'future'colliders'in'parallel'and'beyond'the'HLMLHC”'

'

•  In'the'context'of'exploring'the'Higgs'sector,'provide'a'coherent'comparison'of'the'reach'with'all'

future'collider'programmes'proposed'for'the'European'Strategy'update,'and'to'project'the'

informaeon'on'a'emeline.'

•  For'the'benefit'of'the'comparison,'moevate'the'choice'for'an'adequate'interpretaeon'framework'

(e.g.'EFT,'κ,'…)'and'apply'it,'and'map'the'poteneal'prerequisites'related'to'the'validity'and'use'of'

such'framework(s).'

•  For'at'least'the'following'aspects,'where'achievable,'comparisons'should'be'aim'for:'

o  Precision'on'couplings'and'selffcouplings'(through'direct'and'indirect'methods)'

o  Sensieviees'to'anomalous'and'rare'Higgs'decays'(SM'and'BSM),'and'precision'on'total'width'

o  Sensievity'to'new'highfscale'physics'through'loop'correceons'
o  Sensieviees'to'flavor'violaeon'and'CP'violaeng'effects'

•  In'all'cases'the'future'collider'informaeon'is'to'be'combined'with'the'expected'HLfLHC'reach,'and'

the'combined'extended'reach'is'to'be'compared'with'the'baseline'reach'of'the'HLfLHC.''

•  In'April'2019,'provide'a'comprehensive'and'public'report'to'inform'the'community.''



EW/Higgs studies for the ESU
• The main outcome of the Higgs@FC working group studies is collected in 

the report in JHEP 01 (2020) 139 (1905.03764 [hep-ph]) and some of its results are 
summarized in the Electroweak Physics chapter of the Physics Briefing Book 

• Here I will briefly present some of the SMEFT results prepared for the 
Higgs@FC WG, as well as some items to go beyond the ESU studies 


• For more details, see C. Grojean’s talk at the EF01 kickoff meeting on 
May 13, 2020 
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ABSTRACT

This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson
studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update
process, and takes as its point of departure the results expected at the completion of the HL-LHC program. This report
presents quantitative results on many aspects of Higgs physics for future collider projects of sufficient maturity using uniform
methodologies. A first version of this report was prepared for the purposes of discussion at the Open Symposium in Granada
(13-16/05/2019). Comments and feedback received led to the consideration of additional run scenarios as well as a refined
analysis of the impact of electroweak measurements on the Higgs coupling extraction.
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• Studies prepared using 2 frameworks and different scenarios: 
κ-framework

-Compact parameterization of NP in 

single Higgs processes

-Does not require any BSM calculation per se

-Info easily applicable to several interesting

 NP scenarios (e.g. CH, MSSM)


- Not usable beyond single Higgs processes

- Only for total rates, no kinematics 

(Energy, angular dependence), no polarization 

-Does not distinguish the source of NP 

(interpreted only as mod. of SM-like H couplings)

SMEFT-framework

Low Energy observables:

Parity Violation: QW (
133
55 Cs, 205

81 Tl), QW (e)(Møller)

⌫ scatt. : gV,A(⌫µe), g2
L,R

(⌫µN)

CKM unitarity :
P

i
|Vui|2

LEP 2 data:

�(e+e� ! `+`�, had), A`
+
`
�

FB
, d�

e+e�!e+e�

d cos ✓

Higgs signal strengths:

H ! ��, ZZ, W+W�, bb̄, ⌧+⌧�

LHC Drell-Yan
�(pp ! `+`�)

3 E↵ective Lagrangian description of New Physics:

Equations

LE↵ =
P1

d=4
1

⇤d�4Ld = LSM +
1
⇤
L5 +

1
⇤2L6 + · · · (2)

Ld =
P

i
↵d

i
Od

i
(3)

⇥
Od

i

⇤
= d (4)

E ⌧ ⇤ (5)

4 New Particles

3

-Theoretically robust framework

-Describes correlations between EW/Higgs/VV/Top/…

-Easy to interpret within general classes of (decoupling)

 new physics

-Many parameters (2499 to dimension 6)

-It requires extension to apply to not-heavy 

new physics

Pros 

Pros 

Cons 

Cons 

1 Equations

Ci/⇤2 (1)

Ld =
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i
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[Oi] = d (3)
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using some of the model flags. Setting the flag QuadraticTerms to “True”, one can test the
quadratic e�ects of the dimension-six interactions in the Higgs productions cross sections
and decay widths.

3.6. Modified Higgs Couplings in the Ÿ-framework
In many scenarios of new physics one of the main predictions are deviations in the Higgs

boson couplings with respect to the SM ones. Such an scenario can be described in general
by considering the following e�ective Lagrangian for a light Higgs-like scalar field h [43, 44]:

L =1
2ˆµhˆµh ≠ V (h) + v2

4 Tr(Dµ�†Dµ�)
A

1 + 2ŸV

h

v
+ . . .

B

≠ mui

1
ui

L
di

L

2
�

A
ui

R

0

B A

1 + Ÿu

h

v
+ . . .

B

+ h.c.

≠ mdi

1
ui

L
di

L

2
�

A
0

di

R

B A

1 + Ÿd

h

v
+ . . .

B

+ h.c.

≠ m¸i

1
‹i

L
¸i

L

2
�

A
0
¸i

R

B A

1 + Ÿ¸

h

v
+ . . .

B

+ h.c. .

(10)

This Lagrangian assumes an approximate custodial symmetry and the absence of other
light degrees of freedom below the given cut-o� scale. In the previous Lagrangian the
longitudinal components of the W and Z gauge bosons, ‰a(x), are described by the 2 ◊ 2
matrix �(x) = exp (i‡a‰a(x)/v), with ‡a the Pauli matrices, and V (h) is the scalar potential
of the Higgs field, whose details are not relevant for the discussion here. The SM is recovered
for ŸV = Ÿu = Ÿd = Ÿ¸ = 1. Deviations from such a class of scenarios (and beyond) are
convenient encoded in the so-called Ÿ framework. In this parameterization, deviations from
the SM in the Higgs properties are described by coupling modifier, Ÿi, defined from the
di�erent Higgs production cross sections and decay widths. Schematically,

(‡ · BR)(i æ H æ f) = Ÿ
2
i
‡

SM(i æ H)Ÿ
2
f

�SM(Hæf)
�H

(11)

where the total Higgs width, allowing the possibility of non-SM invisible or exotic decays,
parameterized by BRinv and BRexo, can be written as

�H = �SM
H

q
i

Ÿ
2
i

BRSM
i

1≠BRinv≠BRunt
(12)

The model class HiggsKigen contains a general implementation of the parameterization
described in the Ÿ framework, o�ering also several flags to adjust the di�erent types of
assumptions that are used in the literature (see []). The most general set of coupling mod-
ifiers allowed in the class is described in Table 4, including also the possibility for non-SM
contributions to invisible or exotic (non-invisible) Higgs decays. 2 Note that, even though

2As in the NPSMEFTd6 class, there are several nuisance parameters in the model to control theory un-
certainties in certain Higgs processes. We refer to the documentation for a extensive list of the model
parameters.
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• Studies prepared using 2 frameworks and different scenarios: 
κ-framework

-Compact parameterization of NP in 

single Higgs processes

-Does not require any BSM calculation per se

-Info easily applicable to several interesting

 NP scenarios (e.g. CH, MSSM)


- Not usable beyond single Higgs processes

- Only for total rates, no kinematics 

(Energy, angular dependence), no polarization 

-Does not distinguish the source of NP 

(interpreted only as mod. of SM-like H couplings)

SMEFT-framework
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-Theoretically robust framework

-Describes correlations between EW/Higgs/VV/Top/…

-Easy to interpret within general classes of (decoupling)

 new physics

-Many parameters (2499 to dimension 6)

-It requires extension to apply to not-heavy 

new physics

Pros 

Pros 

Cons 

Cons 
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using some of the model flags. Setting the flag QuadraticTerms to “True”, one can test the
quadratic e�ects of the dimension-six interactions in the Higgs productions cross sections
and decay widths.

3.6. Modified Higgs Couplings in the Ÿ-framework
In many scenarios of new physics one of the main predictions are deviations in the Higgs

boson couplings with respect to the SM ones. Such an scenario can be described in general
by considering the following e�ective Lagrangian for a light Higgs-like scalar field h [43, 44]:

L =1
2ˆµhˆµh ≠ V (h) + v2
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(10)

This Lagrangian assumes an approximate custodial symmetry and the absence of other
light degrees of freedom below the given cut-o� scale. In the previous Lagrangian the
longitudinal components of the W and Z gauge bosons, ‰a(x), are described by the 2 ◊ 2
matrix �(x) = exp (i‡a‰a(x)/v), with ‡a the Pauli matrices, and V (h) is the scalar potential
of the Higgs field, whose details are not relevant for the discussion here. The SM is recovered
for ŸV = Ÿu = Ÿd = Ÿ¸ = 1. Deviations from such a class of scenarios (and beyond) are
convenient encoded in the so-called Ÿ framework. In this parameterization, deviations from
the SM in the Higgs properties are described by coupling modifier, Ÿi, defined from the
di�erent Higgs production cross sections and decay widths. Schematically,

(‡ · BR)(i æ H æ f) = Ÿ
2
i
‡

SM(i æ H)Ÿ
2
f

�SM(Hæf)
�H

(11)

where the total Higgs width, allowing the possibility of non-SM invisible or exotic decays,
parameterized by BRinv and BRexo, can be written as

�H = �SM
H

q
i

Ÿ
2
i

BRSM
i

1≠BRinv≠BRunt
(12)

The model class HiggsKigen contains a general implementation of the parameterization
described in the Ÿ framework, o�ering also several flags to adjust the di�erent types of
assumptions that are used in the literature (see []). The most general set of coupling mod-
ifiers allowed in the class is described in Table 4, including also the possibility for non-SM
contributions to invisible or exotic (non-invisible) Higgs decays. 2 Note that, even though

2As in the NPSMEFTd6 class, there are several nuisance parameters in the model to control theory un-
certainties in certain Higgs processes. We refer to the documentation for a extensive list of the model
parameters.
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BSM decays
-Also useful for validation of our procedure/code, comparing with the κ fits prepared by the different 
future collider projects


-Not covered in this talk. See C. Grojean’s talk at EF01 kickoff meeting for results in this formalism




Comparison framework
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• Global SMEFT studies: Fit to Higgs/EWPO/diBoson/Top 

SMEFT assumptions 
• SMEFT truncated at the dim 6 in the EFT expansion (Calculations performed in a modified version of 

the Warsaw basis)


• Neglect effects from 4-fermion operators other than the 4-lepton operator contributing to µ decay (and 
hence to GF). 


• 4-fermion operators assumed to be constrained better in non-Higgs processes (e.g. pp → ff or     
e+e- → ff at high E) 


• No dipole operators (Could be relevant for general analysis of Top processes, but are neglected in our 
studies)


• Two types of flavor assumptions: flavour universal (18 NP pars) and flavour diagonal (30 NP pars)


Neutral Diagonal: SMEFTND fit

5 SM + 30 New Physics Parameters

– Vector couplings to fermions:

�L
vff,hvff

6
= gp

2

�
1 + 2h

v

�
W

+

µ

⇣
�̂g

W `

L
⌫̄�̄µe + �̂g

Wq
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ū�µd + �̂g
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R
ū�µd + h.c.

⌘

+
p
g2 + g0 2
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�
Zµ

hP
f=u,d,e,⌫

�̂g
Zf

L
f̄�µf +

P
f=u,d,e

�̂g
Zf

R
f̄�µf

i
, (8)

where, again, not all terms are independent3:

�̂g
W `

L
= �̂g

Z⌫

L
� �̂g

Ze

L
, �̂g

Wq

L
= �̂g

Zu

L
VCKM � VCKM �̂g

Zd

L
. (9)

In the case of Flavour Universality, all the �̂g are proportional to the identity corresponding to a total of 8
parameters: (�̂gZu

L
)ij ⌘ �gZu

L
⇥ �ij , etc. However the right handed charged current, associated to �̂gWq

R
does not

interfere with the SM amplitudes in the limit mq ! 0 and can be neglected, reducing the number of parameters
to 7.

In the case of Neutral Diagonality, the assumption �̂g
ij

/ �ij is relaxed, allowing for the four coe�cients

associated to the third quark family (�̂gZu

L
)33, (�̂gZd

L
)33, (�̂gZu

R
)33, (�̂gZd

R
)33 as well as all diagonal coe�cients

associated to leptons to be di↵erent. This adds 10 further parameters with respect to the flavour Universal case.
In conclusion considering single Higgs and EW processes (i.e. neglecting the Higgs trilinear) in the scenarios

of Flavour Universality and Neutral Diagonality we end up with respectively 18 and 30 independent parameters:

SMEFTFU ⌘ {�m, cgg, �cz, c�� , cz� , czz, cz⇤, �yu, �yd, �ye, �z} +
�
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L
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L
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L
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Ze

L
, �g
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R
, �g

Zd

R
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Ze

R

 
,

SMEFTND ⌘ {�m, cgg, �cz, c�� , cz� , czz, cz⇤, �yt, �yc, �yb, �y⌧ , �yµ, �z}

+
�
(�gZu

L
)qi

, (�gZd

L
)qi

, (�gZ⌫

L
)`, (�gZe

L
)`, (�gZu

R
)qi

, (�gZd

R
)qi

, (�gZe

R
)`
 
q1=q2 6=q3, `=e,µ,⌧

.

While we have chosen to present the degrees of freedom used in the di↵erent fitting scenarios described above
using the parameterization of the Higgs basis, one can of course do the same in any other basis. In particular,
the mapping between the Higgs basis parameters in the previous Lagrangians and the Wilson coe�cients in
other popular dimension-6 bases in the literature can be found in Section 3 and appendices A and B in [?].

The previous two scenarios will be used to study the sensitivity at future colliders to general departures
from the SM in the global fit to EWPO, Higgs boson rates and diboson production. We will, however, also
consider another more simplified scenario, designed exclusively to study (1) the interplay between the EW and
Higgs constraints, and (2) the impact of the SM theory uncertainties in Higgs boson processes. The impact of
the EW precision constraints on Higgs boson measurements will be illustrated comparing the results of the fit
in the SMEFTND scenario, with the analogous ones assuming the electroweak precision observables are known
with infinite accuracy, both from experiment and theory. We will refer to this idealized case as a scenario with
perfect EW constraints. In practice, this means that any new physics contributions to the EWPO are bounded
to be exactly zero. This includes all possible corrections to the V ff vertices as well as any possible modification
to the W mass, i.e.

�
�m, (�gZu

L
)qi

, (�gZd

L
)qi

, (�gZ⌫

L
)`, (�gZe

L
)`, (�gZu

R
)qi

, (�gZd

R
)qi

, (�gZe

R
)`
 
⌘ 0. (10)

As also mentioned above, in this scenario it is also implicit that the SM theory uncertainties on EWPO are
negligible, which makes it suitable to isolate the e↵ect of the SM theory uncertainties in Higgs processes in the
fit. Imposing the previous constraints in Eq. (10) we are thus left with a total of 12 parameters for this scenario
assuming perfect EW constraints:

SMEFTPEW ⌘ { cgg, �cz, c�� , cz� , czz, cz⇤, �yt, �yc, �yb, �y⌧ , �yµ, �z} . (11)

Finally, while the setup described above aims at some generality, it makes sense to add some perspective on
the nature of the UV theory and to frame the EFT results in terms of particularly well-motivated scenarios.
Understandably, heavy new physics is the more visible in low energy observables the more strongly it is coupled.
In this respect models with a Composite Higgs (CH) are the natural arena in which to perform indirect studies
of new physics. The basic idea of CH models is that all the degrees of freedom of the SM apart from the Higgs

3Here we choose a slightly di↵erent convention for the dependent couplings with respect to [?,?], and we express everything in
terms of the modifications of the neutral currents.
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-Hff and Vff (HVff) diagonal in the physical basis

-Vff (HVff) flavour universality respected by first 2 quark families 


-Better for exploration of H & EW  
capabilities at future colliders 
-Cumbersome from model-building 
point of view to avoid FCNC

Parameter counting in the parameterization of LHCHXSWG-INT-2015-001 Higgs/VVV

Vff/hVff



• Global SMEFT studies: Presentation of SMEFT fit results 

• Compare Future Collider sensitivity to BSM deformations in a basis-
independent way:


Comparison framework

8

• Effective Higgs couplings: Project EFT fit results from dim-6 Wilson 
coefficients/Higgs “basis” parameters into (pseudo) observable 
quantities 

• Not enough to match EFT d.o.f. modifying H interactions → Add aTGC


operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.

�Z!e+e� = ↵ MZ

6 sin2 ✓w cos2 ✓w

(|ge

L
|
2 + |g

e

R
|
2), Ae = |ge

L
|2�|ge

R
|2

|ge

L
|2+|ge

R
|2 . (15)

In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.
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Presentation of EFT fits results

�5

• Effective couplings 
Direct connection to experimental measurements Connection to UV less direct
Try to define from physical observables⇒Basis independent
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Ignoring CKM e↵ects
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1.3 Higgs couplings
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12The choices of the bottom mass value would change the numerical values in Eq. (D.7), but has little
impact on the global fit results.
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e.g. in Higgs basis

For Top Yukawa and Higgs self-coupling one could define them from the  
production cross sections (but this is collider specific)

At linear order and collecting enough (pseudo-)observables this is just a change into 
a more “physical” basis (close to Higgs basis except for hVV)

+ … (EW Vff, hVff)

Only these are described in κ-framework

operator D⇢�†D⇢�Gµ⌫Gµ⌫ which simply comes with coe�cient ⇠ g2
s
/m4

⇤. One can then easily see that when
the experimental accuracy in the measurement of gg ! HH is worse than O(y2

t
/16⇡2), the sensitivity on m⇤ is

dominated by the dim-8 operator.
Although the particular structure of the previous Lagrangian is not fully general, it provides a theoretically

sound benchmark to interpret the results of our studies from a more BSM-oriented perspective. The contribu-
tions from the di↵erent SILH Wilson coe�cients in the Lagrangian (13) to the parameters of the Higgs basis
can be found in [?].

1.2 Results from the EFT framework studies

In the previous section we have detailed the counting of the degrees of freedom that enter in the di↵erent
SMEFT fit scenarios using the so-called Higgs basis. While physical results do not depend on the choice of
basis, in some cases a particular basis may be convenient for computational, presentation or interpretational
purposes (note that the physical interpretation of each dimension-six operator does depend on the basis). From
the point of view of the results presented in this section, however, we are mostly interested in comparing the
sensitivity to deformations with respect to the SM in the Higgs couplings at the di↵erent future collider projects.
To assess these deformations with respect to the SM in a basis-independent way one can project the results of
the SMEFT fit onto a set of on-shell properties of the Higgs boson, via the following Higgs e↵ective couplings:

g
e↵ 2

HX
⌘

�H!X

�
SM
H!X

. (14)

By definition, these quantities, constructed from physical observables, are basis independent. These definitions
are also convenient to compare in a straightforward manner the SMEFT results with those of the  framework
for the single Higgs couplings. Such definition is, however, not phenomenologically possible for the top-Higgs
coupling and the Higgs self-interaction. For the present report we will sidestep these issues by: (1) defining the
e↵ective top coupling in a similar way to all other fermions; (2) to connect and compare with all current studies
of the Higgs self-interaction, we will define ghhh ⌘ �3/�SM

3
.

Note that, at the dimension-six level and truncating the physical e↵ects at order 1/⇤2 one can always express
the previous e↵ective couplings in terms of the dimension-six operators via a linear transformation. Provided
one has a large enough set of such e↵ective couplings, one can then map the e↵ective coupling result into Wilson
coe�cients, and viceversa (of course, the former are not a basis per se and the connection is only well-defined
at a fixed order in perturbation theory and in the EFT expansion). The single Higgs couplings plus ghhh are
however not enough to match the number of free parameters in the SMEFT fits, even in the simplified scenario
SMEFTPEW in eq. (11). In particular, the on-shell couplings ge↵

HZZ,HWW
in eq. (14) do not capture all possible

linear combinations of the di↵erent types of EFT interactions contributing to the HZZ and HWW vertices.4

For that reason we will also present our results by adding the predictions for the (pseudo) observable aTGC
obtained from the di-boson analysis. These extra parameters o↵er a measure of the Higgs couplings to gauge
boson with a non-SM Lorentz structure. As long as we restrict the analysis to observables around the Higgs
mass scale, this approach with on-shell e↵ective couplings and aTGC is perfectly appropriate. When high-energy
observables are considered, like in Section 1.2.2, it would have to be revisited. (In that section, however, we
will present the results directly in terms of the Wilson coe�cients, for easier interpretation in terms of BSM
scenarios.) Even after adding the aTGC, in the SMEFTPEW scenario where �m ⌘ 0 the ge↵

HZZ,HWW
couplings

are not independent, and therefore we will present the results reporting only the coupling to Z bosons.
In the global fit scenarios SMEFTFU and SMEFTND, where we also add those combinations of operators

that can contribute to EWPO, extra information needs to be added to illustrate the constraints on the di↵erent
degrees of freedom included in the fit. Since �m is now a free parameter, we report separately the ge↵

HZZ,HWW

couplings. Following a similar approach as for the Higgs couplings, one can report the sensitivity to modifications
in the e↵ective couplings of the Z to fermions, which can be defined from the Z-pole measurements of the Z
decays and asymmetries, e.g.

�Z!e+e� = ↵ MZ

6 sin2 ✓w cos2 ✓w

(|ge

L
|
2 + |g

e

R
|
2), Ae = |ge

L
|2�|ge

R
|2

|ge

L
|2+|ge

R
|2 . (15)

In what follows, we discuss the results of the SMEFT fit from the point of view of the expected sensitivity
to modifications of the Higgs couplings in the scenarios SMEFTFU and SMEFTND. As it was done in the fits in

4We note, however, that, from the point of view of the interpretation in terms of motivated scenarios like those described below
Eq. (13), the contributions to such interactions are dominated only by c�, unless g? ⇠ 4⇡.
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• Similarly, for EW interactions, project results into effective Zff couplings 
defined from EWPO, e.g.
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• Fit to new physics effects parameterized by the dimension 6 SMEFT:


• Bayesian fit using


• Future sensitivity from posterior info (NP-parameters/Observables errors/
limits)


• Assumptions: 

• Likelihood: SM predictions as central values for future “experimental” 
measurements. Errors given by projected experimental uncertainties.


• New physics effects: Working at the linear-level in the EFT effects 
(interference with SM amplitudes)


• SM theory uncertainties: SM intrinsic and parametric uncertainties reduced 
according to future projections. Included in the analysis when available via 
nuisance parameters + marginalization


General strategy for calculation of future sensitivities

fit
1
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Note: Different definitions of “Year”: ILC 1.6 x 107 sec, FCC-ee/CLIC: 1.2 x 107 sec, CEPC: 1.3 x 107 sec

Future Particle Colliders

Table 1. Summary of the future colliders considered in this report. The number of detectors given is the number of detectors
running concurrently, and only counting those relevant to the entire Higgs physics programme. The instantaneous and
integrated luminosities provided are that used in the individual reports, and for e+e� colliders the integrated luminosity
corresponds to the sum of those recorded by the detectors. For HL-LHC this is also the case while for HE-LHC and FCChh it
corresponds to 75% of that. The values for

p
s are approximate, e.g. when a scan is proposed as part of the programme this is

included in the closest value (most relevant for the Z, W and t programme). For the polarisation, the values given correspond to
the electron and positron beam, respectively. For HL-LHC, HE-LHC, FCC, CLIC and LHeC the instantaneous and integrated
luminosity values are taken from Ref. [12]. For these colliders the number of seconds per year is 1.2⇥107 based on CERN
experience [12]. CEPC (ILC) assumes 1.3⇥107 (1.6⇥107) seconds for the annual integrated luminosity calculation. When
two values for the instantaneous luminosity are given these are before and after a luminosity upgrade planned. The last column
gives the abbreviation used in this report in the following sections. When the entire programme is discussed, the highest energy
value label is used, e.g. ILC1000 or CLIC3000. It is always inclusive, i.e. includes the results of the lower-energy versions of that
collider. Also given are the shutdowns (SDs) needed between energy stages of the machine. SDs planned during a run at a
given energy are included in the respective energy line.(*) For FCC-hh a value of

p
s = 37.5 TeV is also considered, see App. F.

Additional scenarios where ILC/CLIC accumulate 100 fb�1 on the Z-pole, and where FCC-ee has 4 IPs are also discussed in
Appendix F.

Collider Type
p

s P [%] N(Det.) Linst L Time Refs. Abbreviation
[e�/e+] [1034] cm�2s�1 [ab�1] [years]

HL-LHC pp 14 TeV - 2 5 6.0 12 [13] HL-LHC
HE-LHC pp 27 TeV - 2 16 15.0 20 [13] HE-LHC
FCC-hh(⇤) pp 100 TeV - 2 30 30.0 25 [1] FCC-hh
FCC-ee ee MZ 0/0 2 100/200 150 4 [1]

2MW 0/0 2 25 10 1-2
240 GeV 0/0 2 7 5 3 FCC-ee240

2mtop 0/0 2 0.8/1.4 1.5 5 FCC-ee365
(+1) (1y SD before 2mtop run)

ILC ee 250 GeV ±80/±30 1 1.35/2.7 2.0 11.5 [3, 14] ILC250
350 GeV ±80/±30 1 1.6 0.2 1 ILC350
500 GeV ±80/±30 1 1.8/3.6 4.0 8.5 ILC500

(+1) (1y SD after 250 GeV run)
1000 GeV ±80/±20 1 3.6/7.2 8.0 8.5 [4] ILC1000

(+1-2) (1-2y SD after 500 GeV run)
CEPC ee MZ 0/0 2 17/32 16 2 [2] CEPC

2MW 0/0 2 10 2.6 1
240 GeV 0/0 2 3 5.6 7

CLIC ee 380 GeV ±80/0 1 1.5 1.0 8 [15] CLIC380
1.5 TeV ±80/0 1 3.7 2.5 7 CLIC1500
3.0 TeV ±80/0 1 6.0 5.0 8 CLIC3000

(+4) (2y SDs between energy stages)
LHeC ep 1.3 TeV - 1 0.8 1.0 15 [12] LHeC
HE-LHeC ep 1.8 TeV - 1 1.5 2.0 20 [1] HE-LHeC
FCC-eh ep 3.5 TeV - 1 1.5 2.0 25 [1] FCC-eh

4/75

pp

e+e-

ep
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• Inputs included in the fits (from ESU documents and refs. therein):


Higgs aTGC EWPO Top EW

FCC-ee Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom.) Yes Yes (365 GeV, Ztt)

ILC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (HE limit) Yes 


(Rad. Return, Giga-Z) Yes (500 GeV, Ztt)

CEPC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom) Yes No

CLIC Yes (μ, σΖΗ) Yes (Full EFT 
parameterization)

Yes 

(Rad. Return, Giga-Z) Yes 

HE-LHC Extrapolated from 
HL-LHC N/A → LEP2 LEP/SLD 


+ HL-LHC (MW, sin2θw) -

FCC-hh
Yes (μ, BRi/BRj) 


Used in combination 
with FCCee/eh

From FCC-ee From FCC-ee -

LHeC Yes (μ) N/A → LEP2 LEP/SLD 

+ HL-LHC (MW, sin2θw) -

FCC-eh
Yes (μ) 


Used in combination 
with FCCee/hh

From FCC-ee From FCC-ee 

+ Zuu, Zdd -
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Only possible at  
lepton colliders

Rates (signal strength)

(Inclusive) cross section
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MZ, �Z, �Z!f , Af
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, . . . (29)
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3

EWPO
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pp ! HH (16)
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d�

(10)

S0(�) = d�
d�

��
SM

(11)

ciSi(�) = d�
d�

��
Interf . SM�NP

(12)

Oi =
P

k2events

Si(�k)
S0(�k)

(13)

cov(ci, cj) =
⇣
L
R
d�Si(�)Sj(�)

S0(�)

⌘�1

+ O(ck) (14)
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Z physics via Z-pole:
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• Inputs included in the fits (from ESU documents and refs. therein):


Higgs aTGC EWPO Top EW

FCC-ee Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom.) Yes Yes (365 GeV, Ztt)

ILC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (HE limit) Yes 


(Rad. Return, Giga-Z) Yes (500 GeV, Ztt)

CEPC Yes (μ, σΖΗ)

(Complete with HL-LHC) Yes (aTGC dom) Yes No

CLIC Yes (μ, σΖΗ) Yes (Full EFT 
parameterization)

Yes 

(Rad. Return, Giga-Z) Yes 

HE-LHC Extrapolated from 
HL-LHC N/A → LEP2 LEP/SLD 


+ HL-LHC (MW, sin2θw) -

FCC-hh
Yes (μ, BRi/BRj) 


Used in combination 
with FCCee/eh

From FCC-ee From FCC-ee -

LHeC Yes (μ) N/A → LEP2 LEP/SLD 

+ HL-LHC (MW, sin2θw) -

FCC-eh
Yes (μ) 


Used in combination 
with FCCee/hh

From FCC-ee From FCC-ee 

+ Zuu, Zdd -
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As part of the Higgs@FC mandate, we restrict our main results to 
using the inputs of the different future collider projects as provided 

in the corresponding reports 

(Note that in some cases there is different level of sophistication, 
e.g. fast vs full simulation) 

Results always presented in combination with the expected 
knowledge of H/EW interactions at the end of the HL-LHC era 
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Results in the SMEFT-framework (Higgs/aTGC)
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Figure 3. Sensitivity at 68% probability to deviations in the different effective Higgs couplings and aTGC from a global fit to
the projections available at each future collider project. Results obtained within the SMEFT framework in the benchmark
SMEFTND. The HE-LHC results correspond to the S02 assumptions for the theory systematic uncertainties in Higgs
processes [13].

3.4.2 Results for BSM-motivated effective Lagrangians

In this subsection, we adopt a more BSM-oriented perspective and present the global fit results in a way that can be easily
matched to theory-motivated scenarios, such as composite Higgs models. For that purpose, we will restrict the results to the set
of dimension-6 interactions in the effective Lagrangian in eq. (19) and adopt the usual presentation of results in terms of the
bounds on the dimension-6 operator coefficients. We will also extend the global fits presented in previous sections, adding
further studies available in the literature about high-energy probes of the EFT. These are designed to benefit from the growth
with energy of the contributions of certain dimension-6 operators in physical processes, leading to competitive constraints
on new physics, without necessarily relying on extreme experimental precision. In this regard, we note that these studies are
usually not performed in a fully global way within the EFT framework, but rather focus on the most important effects at high
energies. Therefore, the results when such processes dominate in the bounds on new physics should be considered with a
certain amount of caution, although they should offer a reasonable approximation under the assumptions in (19) and (20). In
particular, we will add the following high-energy probes using di-boson and di-fermion processes:

• The constraints on the W and Y oblique parameters [48] (which can be mapped into c2W,2B) from fermion pair production
at the HL-LHC, HE-LHC [13], FCC-hh [49], ILC at 250, 500 and 1000 GeV [4] and CLIC [46]15.

It must be noted that, for the HE-LHC, only the sensitivity to W and Y from pp ! `+`� is available in [13]. There is no
sensitivity reported from charged-current process, which can constrain W independently. No studies on the reach for the
W and Y parameters were available for CEPC or the FCC-ee. For this section for these two lepton colliders it has been

15 The studies in [46] and [4] make use of significantly different assumptions for the systematic uncertainties and efficiencies for each e+e� ! f f̄ channel.
The apparent small difference in terms of reach at the highest energy stages for CLIC/ILC is, however, due to the high luminosity assumed at ILC, as well as
the use of positron polarization, which allow to partially compensate the lower energy achievable compared to CLIC.
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Results in the SMEFT-framework (Higgs/aTGC)
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Figure 3. Sensitivity at 68% probability to deviations in the different effective Higgs couplings and aTGC from a global fit to
the projections available at each future collider project. Results obtained within the SMEFT framework in the benchmark
SMEFTND. The HE-LHC results correspond to the S02 assumptions for the theory systematic uncertainties in Higgs
processes [13].

3.4.2 Results for BSM-motivated effective Lagrangians

In this subsection, we adopt a more BSM-oriented perspective and present the global fit results in a way that can be easily
matched to theory-motivated scenarios, such as composite Higgs models. For that purpose, we will restrict the results to the set
of dimension-6 interactions in the effective Lagrangian in eq. (19) and adopt the usual presentation of results in terms of the
bounds on the dimension-6 operator coefficients. We will also extend the global fits presented in previous sections, adding
further studies available in the literature about high-energy probes of the EFT. These are designed to benefit from the growth
with energy of the contributions of certain dimension-6 operators in physical processes, leading to competitive constraints
on new physics, without necessarily relying on extreme experimental precision. In this regard, we note that these studies are
usually not performed in a fully global way within the EFT framework, but rather focus on the most important effects at high
energies. Therefore, the results when such processes dominate in the bounds on new physics should be considered with a
certain amount of caution, although they should offer a reasonable approximation under the assumptions in (19) and (20). In
particular, we will add the following high-energy probes using di-boson and di-fermion processes:

• The constraints on the W and Y oblique parameters [48] (which can be mapped into c2W,2B) from fermion pair production
at the HL-LHC, HE-LHC [13], FCC-hh [49], ILC at 250, 500 and 1000 GeV [4] and CLIC [46]15.

It must be noted that, for the HE-LHC, only the sensitivity to W and Y from pp ! `+`� is available in [13]. There is no
sensitivity reported from charged-current process, which can constrain W independently. No studies on the reach for the
W and Y parameters were available for CEPC or the FCC-ee. For this section for these two lepton colliders it has been

15 The studies in [46] and [4] make use of significantly different assumptions for the systematic uncertainties and efficiencies for each e+e� ! f f̄ channel.
The apparent small difference in terms of reach at the highest energy stages for CLIC/ILC is, however, due to the high luminosity assumed at ILC, as well as
the use of positron polarization, which allow to partially compensate the lower energy achievable compared to CLIC.
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See C. Grojean’s talk during EF-01 kickoff meeting or backup slides for more 
details on the results for Higgs couplings/aTGC (including H self-coupling)
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Will SM theory calculations be enough?
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Impact of SM Theory uncertainties in Higgs calculations
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Figure 8. Impact of the different sources of SM theory uncertainties in the coupling reach at the different lepton-collider
projects based on the SMEFTPEW fit. Using dark to light shades we show the results without SM theory uncertainties (darkest
shade), only with the intrinsic uncertainty (medium), and the full SM error (lightest shade). The solid line indicates the result
with SM parametric uncertainties only. The most significant differences are found for the effective coupling to vector bosons
(dominated by intrinsic uncertainties) and to bottom quarks (controlled by the parametric error associated with mb). See
Table 11 and text for details.

HZZ and HWW couplings, and the information on H !WW ⇤ becomes relevant to determine geff
HZZ . The measurement of MH

at the HL-LHC at the 10-20 MeV level prevents this from becoming an issue at the lower energy stages at CLIC. But there is
still a factor ⇠ 2 deterioration in the precision of the geff

HZZ coupling in the final CLIC results, emphasising again the necessity
of a precise determination of MH .
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Largest effect on HVV 
couplings 

Differences in other couplings 
mainly due to unc. in 

production
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Decay Γ current unc. ∆Γ/Γ [%] future unc. ∆Γ/Γ [%]

[keV] ThIntr ThPar(mq) ThPar(αs) ThPar(mH ) ThIntr ThPar(mq) ThPar(αs) ThPar(mH )

H → bb̄ 2379 < 0.4 1.4 0.4 − 0.2 0.6 < 0.1 −
H → τ+τ− 256 < 0.3 − − − < 0.1 − − −
H → cc̄ 118 < 0.4 4.0 0.4 − 0.2 1.0 < 0.1 −

H → µ+µ− 0.89 < 0.3 − − − < 0.1 − − −
H → W+W− 883 0.5 − − 2.6 0.4 − − 0.1

H → gg 335 3.2 < 0.2 3.7 − 1.0 − 0.5 −
H → ZZ 108 0.5 − − 3.0 0.3 − − 0.1

H → γγ 9.3 < 1.0 < 0.2 − − < 1.0 − − −
H → Zγ 6.3 5.0 − − 2.1 1.0 − − 0.1

Table 19. Partial decay widths for the Higgs boson to specific final states and the uncertainties in their calculation [97]. The uncertainties arise
either from intrinsic limitations in the theoretical calculation (ThIntr) and parametric uncertainties (ThPar). The parametric uncertainties are due
to the finite precision on the quark masses, ThPar(mq), on the strong coupling constant, ThPar(αs), and on the Higgs boson mass, ThPar(MH). The
columns labelled “partial width” and “current uncertainty” and refer to the current precision [97], while the predictions for the future are taken
from ref. [131]. For the future uncertainties, the parametric uncertainties assume a precision of δmb = 13 MeV, δmc = 7 MeV, δmt = 50 MeV,
δαs = 0.0002 and δMH = 10 MeV.
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δαs = 0.0002 and δMH = 10 MeV.

–
66

–

TH unc. in decays

Intrinsic TH unc. in production
e.g. e+ e-→Z H 

Missing 2-loop: O(1%)
 Full 2-loop should  

reduce uncertainty to O(0.1%)
In any case, reducible with  

necessary effort from theory side

Hence the choice of presenting  
main results with parametrics only

See C. Grojean’s talk during EF-01 kickoff meeting or backup slides for more 
details on the results for Higgs couplings/aTGC (including H self-coupling)
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The other “half” of the SMEFT fit: EW Zff couplings
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Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. Note
that Z-radiative return measurements at ILC and CLIC are included in the fit. Two different assumptions are considered for the
systematic errors. The HE-LHC results correspond to the S02 assumptions for the theory systematic uncertainties in Higgs
processes [13]. See text for details.

estimated following the studies in Ref. [4, 46] 16.

• The study in Ref. [50] of the MZH distribution in pp ! ZH,H ! bb̄ in the boosted regime for the HL-LHC [13] and
FCC-hh [1]. (This was not available for the HE-LHC.) Note that both CLIC (and to a lesser extent ILC) have access to
similar physics in the leptonic case, from the ZH measurements at 1.5/3 TeV (500/1000 GeV). Current ILC projections
for Higgs production at 1 TeV [4] are only available for the W boson fusion channel. For the fits presented in this section,
for sZH ⇥BR(H ! bb) at ILC at 1 TeV an uncertainty of 1.3% is assumed for each polarization [51].

• The pTV distribution in pp !WZ from Ref. [52] for the HL-LHC, HE-LHC and FCC-hh.

These are of course only a sample of the high-energy precision probes that could be tested at future colliders (and at HL-LHC)
so the results presented are not an exhaustive study of the potential of the different machines in this regard. (See, e.g., [53, 54].)

The results of this fit are shown in Figure 6 after the full run of each future collider project, and in Table 9. Apart from
the 68% probability bounds for each operator from the global fit, we also present the results assuming only one operator is
generated by the UV dynamics. The difference between both results is indicative of the correlations between the different
operators in the fit. These can, in some cases, be rather large. A full study of such correlations goes beyond the scope of this
report, but it is worth mentioning that some of the largest correlations typically occur between Og , OfW , OfB, OW , OB where
all contribute to the Higgs interactions with neutral vector bosons. Large correlations also connect Og and Oyu . These are

16We obtain alues of dWCEPC ⇠ 5.3⇥ 10�5, dYCEPC ⇠ 4.7⇥ 10�5, with a correlation of -0.5; dWFCC�ee(240) ⇠ 5.4⇥ 10�5, dYFCC�ee(240) ⇠ 4.9⇥ 10�5,
with the same -0.5 correlation; and dWFCC�ee ⇠ 3.2⇥10�5, dYFCC�ee ⇠ 2.9⇥10�5, with a correlation of -0.53.
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The other “half” of the SMEFT fit: EW Zff couplings
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Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. Note
that Z-radiative return measurements at ILC and CLIC are included in the fit. Two different assumptions are considered for the
systematic errors. The HE-LHC results correspond to the S02 assumptions for the theory systematic uncertainties in Higgs
processes [13]. See text for details.

estimated following the studies in Ref. [4, 46] 16.

• The study in Ref. [50] of the MZH distribution in pp ! ZH,H ! bb̄ in the boosted regime for the HL-LHC [13] and
FCC-hh [1]. (This was not available for the HE-LHC.) Note that both CLIC (and to a lesser extent ILC) have access to
similar physics in the leptonic case, from the ZH measurements at 1.5/3 TeV (500/1000 GeV). Current ILC projections
for Higgs production at 1 TeV [4] are only available for the W boson fusion channel. For the fits presented in this section,
for sZH ⇥BR(H ! bb) at ILC at 1 TeV an uncertainty of 1.3% is assumed for each polarization [51].

• The pTV distribution in pp !WZ from Ref. [52] for the HL-LHC, HE-LHC and FCC-hh.

These are of course only a sample of the high-energy precision probes that could be tested at future colliders (and at HL-LHC)
so the results presented are not an exhaustive study of the potential of the different machines in this regard. (See, e.g., [53, 54].)

The results of this fit are shown in Figure 6 after the full run of each future collider project, and in Table 9. Apart from
the 68% probability bounds for each operator from the global fit, we also present the results assuming only one operator is
generated by the UV dynamics. The difference between both results is indicative of the correlations between the different
operators in the fit. These can, in some cases, be rather large. A full study of such correlations goes beyond the scope of this
report, but it is worth mentioning that some of the largest correlations typically occur between Og , OfW , OfB, OW , OB where
all contribute to the Higgs interactions with neutral vector bosons. Large correlations also connect Og and Oyu . These are

16We obtain alues of dWCEPC ⇠ 5.3⇥ 10�5, dYCEPC ⇠ 4.7⇥ 10�5, with a correlation of -0.5; dWFCC�ee(240) ⇠ 5.4⇥ 10�5, dYFCC�ee(240) ⇠ 4.9⇥ 10�5,
with the same -0.5 correlation; and dWFCC�ee ⇠ 3.2⇥10�5, dYFCC�ee ⇠ 2.9⇥10�5, with a correlation of -0.53.
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Different assumptions on the expected  
size of modeling uncertainties (QCD) for hadronic 

asymmetries by the different FC projects  
→ Red marks show results with the more  

conservative assumptions   

It would be good to reach agreement in the systematics 
affecting these observables for the Snowmass studies
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The other “half” of the SMEFT fit: EW Zff couplings
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Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. Note
that Z-radiative return measurements at ILC and CLIC are included in the fit. Two different assumptions are considered for the
systematic errors. The HE-LHC results correspond to the S02 assumptions for the theory systematic uncertainties in Higgs
processes [13]. See text for details.

estimated following the studies in Ref. [4, 46] 16.

• The study in Ref. [50] of the MZH distribution in pp ! ZH,H ! bb̄ in the boosted regime for the HL-LHC [13] and
FCC-hh [1]. (This was not available for the HE-LHC.) Note that both CLIC (and to a lesser extent ILC) have access to
similar physics in the leptonic case, from the ZH measurements at 1.5/3 TeV (500/1000 GeV). Current ILC projections
for Higgs production at 1 TeV [4] are only available for the W boson fusion channel. For the fits presented in this section,
for sZH ⇥BR(H ! bb) at ILC at 1 TeV an uncertainty of 1.3% is assumed for each polarization [51].

• The pTV distribution in pp !WZ from Ref. [52] for the HL-LHC, HE-LHC and FCC-hh.

These are of course only a sample of the high-energy precision probes that could be tested at future colliders (and at HL-LHC)
so the results presented are not an exhaustive study of the potential of the different machines in this regard. (See, e.g., [53, 54].)

The results of this fit are shown in Figure 6 after the full run of each future collider project, and in Table 9. Apart from
the 68% probability bounds for each operator from the global fit, we also present the results assuming only one operator is
generated by the UV dynamics. The difference between both results is indicative of the correlations between the different
operators in the fit. These can, in some cases, be rather large. A full study of such correlations goes beyond the scope of this
report, but it is worth mentioning that some of the largest correlations typically occur between Og , OfW , OfB, OW , OB where
all contribute to the Higgs interactions with neutral vector bosons. Large correlations also connect Og and Oyu . These are

16We obtain alues of dWCEPC ⇠ 5.3⇥ 10�5, dYCEPC ⇠ 4.7⇥ 10�5, with a correlation of -0.5; dWFCC�ee(240) ⇠ 5.4⇥ 10�5, dYFCC�ee(240) ⇠ 4.9⇥ 10�5,
with the same -0.5 correlation; and dWFCC�ee ⇠ 3.2⇥10�5, dYFCC�ee ⇠ 2.9⇥10�5, with a correlation of -0.53.
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Results including the Giga-Z option at linear colliders also available in 
Appendix F of the Higgs@FC WG report 
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Theory requirements for EWPOCentral EW precision (pseudo-)observables at the Z pole
FCC-ee: update of Blondel et al., 1901.02648 (in prep.); ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic theory uncertainty

current ILC FCC-ee current current source prospect

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 α3,α2αs,αα
2
s 0.15

∆ sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 α3,α2αs 1.5

∆Rb[10
−5] 66 14 6 11 α3,α2αs 5

∆Rℓ[10
−3] 25 3 1 6 α3,α2αs 1.5

Theory requirements for Z-pole pseudo-observables:

• needed: ⋄ EW and QCD–EW 3-loop calculations

⋄ 1 → 2 decays, fully inclusive

• problems: ⋄ technical: massive multi-loop integrals, γ5

⋄ conceptual: pseudo-obs. on the complex Z-pole

↪→ Enormous challenge, but feasible (anticipating progress + support!)

Stefan Dittmaier, Precision Electroweak Calculations Symposium on the European Strategy, Granada, May 2019 – 7

Prospects: Extrapolation assuming 
EW & QCD 3-loop corrections 

are known

Current: Full 2-loop corrections 
(Not enough for future Exp. precision)

Technically challenging  
but feasible (with enough support)

⇩

Strongly coupled models come with a parametric enhancement of Ŝ, T̂ over W,Y , such that in the class of models, one can
simplify further the analysis of EW data and perform a two-dimensional fit.

The results of this fit setup are presented in Table 37 and Figure 17, for the different future lepton-collider options, where
the largest improvement in terms of measurements of the EW precision observables (EWPO) is expected. In the table and
figures we also show the impact of the SM theory uncertainties in the results. The results are presented assuming the projected
future improvements in SM theory calculations (Full ThIntr Unc.), neglecting the intrinsic theory uncertainties associated to
such calculations (No ThIntr Unc.) and, finally, also assuming that parametric uncertainties become subdominant (No ThPar+Intr
Unc.). Since several of the SM EW inputs are to be measured at the future collider under consideration, the latter scenario
goes beyond the physics potential of these machines. This scenario is presented only to illustrate whether the precision of the
measurements of such inputs can become a limiting factor in terms of the reach of Ŝ and T̂ . This seems to be the case for the
circular colliders and, to a less extent, the linear collider Giga-Z options.

Table 37. Comparison of the sensitivity at 68% probability to new physics contributions to EWPO in the form of the oblique
S and T parameters, under different assumptions for the SM theory uncertainties. We express the results in terms of the usually
normalised parameters: S = 4sin2 qwŜ/a and T = T̂/a .

HL-LHC HL+CLIC380 HL+CLIC380 (GigaZ) HL+ILC250 HL+ILC250 (GigaZ) HL+CEPC HL+FCC-ee

S Full ThIntr Unc. 0.053 0.032 0.013 0.015 0.012 0.01 0.0079
No ThIntr Unc. 0.053 0.032 0.011 0.012 0.009 0.0068 0.0038

No ThPar+Intr Unc. 0.052 0.031 0.0091 0.011 0.0067 0.0031 0.0013
T Full ThIntr Unc. 0.041 0.023 0.013 0.015 0.014 0.0094 0.0058

No ThIntr Unc. 0.041 0.023 0.012 0.014 0.013 0.0072 0.0022
No ThPar+Intr Unc. 0.039 0.022 0.01 0.011 0.0091 0.0041 0.0019

2-σ region (no ThIntr)
HL+CLIC380,Giga Z
HL+ILC250,Giga Z
HL+CEPC
HL+FCCee
Including ThIntr
HL+CLIC380,Giga Z
HL+ILC250,Giga Z
HL+CEPC
HL+FCCee

-0.04 -0.02 0.00 0.02 0.04
-0.04

-0.02

0.00

0.02

0.04

T

S

Figure 17. (Left) 2-s regions in the S�T plane at the different future colliders, combined with the HL-LHC (including also
the LEP/SLD EWPO programme). We express the results in terms of the usually normalised parameters: S = 4sin2 qwŜ/a and
T = T̂/a . The results include the future projected parametric uncertainties in the SM predictions of the different EWPO, but
not the intrinsic ones. (Right) The same illustrating the impact of neglecting such intrinsic theory errors. For each project
(including the Giga-Z option for linear colliders) the solid regions show the results in the left panel, to be compared with the
regions bounded by the dashed lines, which include the full projected theory uncertainty.
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Still a limiting factor… Example: Reach on oblique parameters S & T

MZ, �Z, �0
had, sin

2 ✓lept
E↵ , P pol

⌧
, Af , A0,f

FB
, R0

f

Low Energy observables:

Parity Violation: QW (
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55 Cs, 205

81 Tl), QW (e)(Møller)
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LEP 2 data:
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Higgs signal strengths:
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LHC Dijet
�(pp ! jj)

3 E↵ective Lagrangian description of New Physics:

Equations
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1
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33 (0)

⇤
(8)

(9)

4 New Particles

3

Oblique parameters:  
NP modifying gauge boson self-energies

+ W & Y at LO in heavy NP expansion (arXiv: hep-ph/0405040) 
(Assumed to be ~0 here)

A. Freitas et al., arXiv: 1906.05379 [hep-ph]
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• Electroweak interactions beyond the Z-pole: precision via high E
1.5 The Discovery at a Future
p
s = 33 TeV Experiment 13

Figure 1-32. Dilepton backgrounds and the

clear signal for a LR Z0
at 3 TeV for e+e� pairs

after 3000 fb
�1

.

Figure 1-33. Fully emerged signal for a LR Z0

at 3 TeV, background subtracted for e+e� pairs

after 3000 fb
�1

.

1.5.2 Run 2 of the Future Collider

The beginning of Run 2 started in January of 2030 as expected without any delays. Again, the data
taking went smoothly, and other parallel stories of new physics continued to unfold as theorists struggled to
simultaneously weave the numerous discoveries together into a new and over-arching tapestry explaining the
fundamental laws of the Universe. For the Z 0 story, tertiary measurements of SM couplings in specific decay
channels and even the possible observation of exotic decays, were helping other stories understand their
signal better as data was being recorded. As run two ended in 2034, pile-up had continued to be a battle,
but continually worked on and understood to bring an impressive dataset of 3000 fb�1 at

p
s = 33 TeV to

the physics groups for analysis. With this dataset the Z
0 analysis had been able to increase the number of

recorded Z
0 events by an order of magnitude, bringing unprecendented levels of precision to measurements

of width, mass, couplings, and even AFB (see complimentary white paper for in depth analysis [11]). The
physicists remembered how far they had come from the first days of the LHC at

p
s = 14 TeV, seeing a

few events out at high-mass (Figure 1-1) and wondering if it would just turn out to be a fluctuation of the
Standard Model. Now the picture was very di↵erent, physicist’s and indeed the World’s understanding of
the fundamental properties of the Universe had leaped almost unimaginably, and in the Z

0 analysis they
were now presented with a magnificent and clear signal shape (Figures 1-32 to 1-35), and AFB measurement
that put the discovery of a LRM model Z 0 beyond all doubt (Figure 1-36). This new particle was one that
they were almost getting used to, but which still excited even the newest Graduate students because of its
implications and the theory paradigm shifts that had occurred over the last 15 years because of it.

1.5.3 The
p
s = 33 TeV Experiment Aftermath

The achievement of Engineers and Physicists alike was astounding, a new machine had been built to go
up to energies of

p
s = 33 TeV, and over 3000 fb�1 of data had been collected from pp collisions over the

years. The journey was hard at times, and required continual maintenance and understanding of both the
accelerator and the Snowmass detector, due to the incredibly harsh environment both were being subjected
to, and the level of precision required for the physics analyses to thrive. Again we break the fourth wall and

Community Planning Study: Snowmass 2013

Ecoll
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Figure 3.1: Feynman diagrams relevant for the dimension-six effective Lagrangian.

The terms of order 1/M4
V contribute to operators of dimension eight and higher, and will be

neglected in the following. In particular, we see that, as promised, the “nonlinear” terms in LV−SM

do not contribute to the effective Lagrangian up to dimension six, and can be ignored. The result
Eq. (3.2) includes a few operators that are not in the basis introduced in Table 1.8. In order to
compare with previous work, it is convenient to express the result in our basis, performing some
Fierz reorderings and field redefinitions (equivalent to the use of the SM EOM on the dimension-six
operators). The final result can then be written as

LV
6 = −

ηV

2M2
V

(JV
µ )†JV µ =

∑∑∑

i

αi

M2
V

Oi

gψ1ψ2

V gψ3ψ4

V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV

gφ
V gφ

V

M2
V

[Φ† ⊗Dµφ]RV [Dµφ† ⊗Φ]RV

gφ
V gψ1ψ2

V

M2
V

[Φ† ⊗Dµφ]RV [ψ1 ⊗ γµψ2]RV

where Oi are the operators collected in Table 1.8, and αi their dimensionless numerical coeffi-
cients. It is clear from the general expression Eq. (3.2), and also from the Feynman diagrams in
Fig. 3.1, that the terms in the effective Lagrangian can be of three basic forms:

1. Four fermions :
g
ψ1ψ2
V g

ψ3ψ4
V

M2
V

[ψ1 ⊗ γµψ2]RV [ψ3 ⊗ γµψ4]RV .
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95 % C.L. limits on (some) dimension-six interactions
F. del Águila, J.B., Fortsch. Phys. 59 (2011) 1036-1040 (arXiv:1105.6103 [hep-ph])

Four-fermion interactions

q

q

ℓ

ℓ

φ

ψ

✓p

φ

ψ

+

φ

ψ

✚✚A φ

ψ

Operator 95% C.L. EW limits
(

lLγµlL
)

(qLγµqL) [−0.011, 0.057]
(

lLγµσI lL
)

(qLγµσIqL) [−0.006, 0.013]
(eRγµeR) (uRγµuR) [−0.113, 0.007]
(eRγµeR)

(

dRγµdR
)

[−0.074, 0.048]
(

lLuR

)

(uRlL) [−0.185, 0.092]
(

lLdR
) (

dRlL
)

[−0.222, 0.035]
(qLeR) (eRqL) [−0.018, 0.115]

Operator 95% C.L. EW limit
Global Fit Excl. MH meas.

(

φ†Dµφ
)

((Dµφ)† φ) (∼ T ) [−0.023, 0.006] [−0.105, 0.027]
φ†σaφ W a

µνB
µν (∼ S) [−0.007, 0.003] [−0.012, 0.020]

T = −
α(3)
φ

2α

v2

Λ2
S =

4scαWB

α

v2

Λ2
(6)

5

Jorge de Blas
University of Notre Dame

LHCP 2013
Barcelona, May 17, 2013 

Model-independent bounds

Ld =
∑

i

αd
iOd

i (4)

[

Od
i

]

= d (5)

E ≪ Λ (6)

ψ2

ψ1

ψ4

ψ3

q

q

ℓ

ℓ

φ

ψ

✓p

φ

ψ

+

φ

ψ

✚✚A φ

ψ

Operator 95% C.L. EW limits on
Oi αi/Λ2

[

TeV−2
]

(

lLγµlL
)

(qLγµqL) [−0.011, 0.057]
(

lLγµσI lL
)

(qLγµσIqL) [−0.006, 0.013]
(eRγµeR) (uRγµuR) [−0.113, 0.007]
(eRγµeR)

(

dRγµdR
)

[−0.074, 0.047]
(

lLuR

)

(uRlL) [−0.185, 0.092]
(

lLdR
) (

dRlL
)

[−0.222, 0.035]
(qLeR) (eRqL) [−0.018, 0.115]
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The effects of polarization are only sizable along the direction W ⇡ �Y . The impact of polariz-
ation is however much more pronounced in the constraints set by each individual difermion channel, as
shown in Figure 25, and it is only washed out in the global fit due to the complementarity between the
different channels. From the figure it is also apparent that the constraints from the top quark channel,
which is subject to larger systematics and whose statistics is more affected by the different selection
efficiencies, are fairly irrelevant in the global fit. Finally, as shown in the left panel of Figure 26, and it
is expected from the energy dependence of the new physics contributions, the bounds on W and Y are
dominated by the 3 TeV run.

Figure 25: (Left) 95% C.R. in the W -Y plane, profiling over S and T , for the different final fermion
states, assuming the CLIC Baseline scenario. (Right). The same in the scenario assuming CLIC operation
with unpolarized beams.
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Figure 26: (Left) 95% C.R. in the W -Y plane, profiling over S and T , including data only from
p

s =
380, 1500 and 3000 GeV, respectively, and assuming the CLIC Baseline scenario. (Right). 95% C.L.
limit in the g⇤-m⇤ plane assuming CLIC operation with polarized beams and 0.3% systematics.

The results presented above can be interpreted within more definite scenarios, either via match-
ing of the SMEFT with specific UV completions [72–86] or using power-counting rules for classes of
models [17, 51]. For instance, assuming the Higgs originates from a strongly coupled strongly sector
characterized by only one coupling g⇤ and one scale m⇤,

W = 2
g2

g2
⇤

M2
W

m2
⇤

, Y = 2
g0 2

g2
⇤

M2
W

m2
⇤

. (50)

One can therefore translate the bounds on W and/or Y into exclusion regions in the g⇤-m⇤ plane. These
are shown in Figure 26 for �sys = 0.3%, for the cases where the new physics only generates contributions
to one of the 2 parameters, W or Y .
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Universal NP
W & Y parameters

 CLIC~25x better than HL-LHC
Similar to 100 TeV FCC-hh

High Energy probes of new physics:  
e.g. growing with energy-effects in 2 → 2 fermion processes 



Electroweak/Higgs physics in high-E tails

24

• High-E processes included in the study (when available in the literature)


• Studied using a SILH-like effective Lagrangian (applied to CH models):


While we have chosen to present the degrees of freedom used in the different fitting scenarios described above using the
parameterization of the Higgs basis, one can of course do the same in any other basis. In particular, the mapping between the
Higgs basis parameters in the previous Lagrangians and the Wilson coefficients in other popular dimension-6 bases in the
literature can be found in Section 3 and appendices A and B in [35].

The previous two scenarios will be used to study the sensitivity at future colliders to general departures from the SM in the
global fit to EW precision observabkles (EWPO), Higgs boson rates and diboson production. We will, however, also consider
another more simplified scenario, designed exclusively to study (1) the interplay between the EW and Higgs constraints, and (2)
the impact of the SM theory uncertainties in Higgs boson processes. The impact of the EW precision constraints on Higgs
boson measurements will be illustrated comparing the results of the fit in the SMEFTND scenario, with the analogous ones
assuming the electroweak precision observables are known with infinite accuracy, both from experiment and theory. We will
refer to this idealized case as a scenario with perfect EW constraints. In practice, this means that any new physics contributions
to the EWPO are bounded to be exactly zero. This includes all possible corrections to the V f f vertices as well as any possible
modification to the W mass, i.e.

n
dm,(dgZu

L )qi ,(dgZd
L )qi ,(dgZn

L )`,(dgZe
L )`,(dgZu

R )qi ,(dgZd
R )qi ,(dgZe

R )`
o
⌘ 0. (17)

As also mentioned above, in this scenario it is also implicit that the SM theory uncertainties on EWPO are negligible, which
makes it suitable to isolate the effect of the SM theory uncertainties in Higgs processes in the fit. Imposing the previous
constraints in Eq. (16) we are thus left with a total of 12 parameters for this scenario assuming perfect EW constraints:

SMEFTPEW ⌘
�

cgg, dcz, cgg , czg , czz, cz⇤, dyt , dyc, dyb, dyt , dyµ , lz
 

. (18)

Finally, while the setup described above aims at some generality, it makes sense to add some perspective on the nature of the
UV theory and to frame the EFT results in terms of particularly well-motivated scenarios. Understandably, heavy new physics
is more visible in low energy observables the more strongly it is coupled. In this respect models with a Composite Higgs (CH)
are the natural arena in which to perform indirect studies of new physics. The basic idea of CH models is that all the degrees of
freedom of the SM apart from the Higgs are elementary. The Higgs instead arises as a bound state from a strong dynamics. In
the simplest possible situation such dynamics is roughly described by two parameters, the overall mass scale and its overall
coupling strength, respectively m⇤ and g⇤. The prototypical template for such a two-parameter description is offered by large N
gauge theories, which are characterized by the overall mass of their resonances (m⇤) and by their mutual coupling g⇤ ⇠ 4p/

p
N.

Concrete and largely calculable realizations of the scenario have been constructed in the context of warped compactifications
and of their holographic interpretation, for reviews see e.g. [37, 38] (there are also attempts to build explicit composite models
in 4D, see e.g. [39, 40]). Of course, as in all matters, it is easy to imagine more elaborate situations, but at the very least the
minimal case can provide a first perspective on future machines. Indeed a more interesting variation concerns the top quark,
which in motivated scenarios can become partially and even fully composite. Under the assumptions described in [30, 31], the
low energy signatures of these kind of models can be parameterized in terms of the following effective Lagrangian:

LSILH =
cf
L2

1
2

∂µ(f †f)∂ µ(f †f)+
cT

L2
1
2
(f † $

Dµ f)(f † $
Dµ f)� c6
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⇣cy f

L2 y f
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S fABCGA n

µ GB r
n GC µ

r ,

(19)

where the different Wilson coefficients can be written in terms of the couplings and masses of the resonances, denoted in short
by g? . 4p and m?, as

cf ,6,y f

L2 ⇠ g2
?

m2
?
⌘ 1

f 2 ,
cT

L2 ⇠ y4
t

16p2
1

m2
?

cW,B,fW,fB,g,g

L2 ⇠ 1
m2

?
,

c2W,2B,2G,3W,3G

L2 ⇠ 1
g2

?

1
m2

?
,

(20)
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ria, we require exactly two subjets after the former step
and at least two subjets after filtering. We proceed with
b-tagging the two hardest subjets. We choose a b-tagging
e�ciency of 70% and a misidentification rate for light jets
of 2%. After the filtering and b-tagging steps, we require
events with exactly two b-tagged subjets, which are well-
separated from the isolated leptons: �R(bi, `j) > 0.4
for both leptons `1,2 and b-tagged subjets bi. We recon-
struct the Higgs by requiring its invariant mass to lie in
the range [115 GeV, 135 GeV].

In order to further reduce the backgrounds, we demand
both the reconstructed Z and the Higgs bosons to have
pT > 200 GeV. The tt̄ background can be removed al-
most entirely by requiring /ET < 30 GeV. The cut-flow
a↵ecting the most dominant background Zbb̄ and the SM
Zh channel, is summarized in Table III.

Before focussing on the very high-energy e↵ects by
imposing cuts on MZh, we find that the ratio of cross-
section between SM Zh and Zbb̄ is⇠ 0.26. A multivariate
implementation at this level strengthens this ratio fur-
ther. In order to be quantitative, we impose looser cuts
on the aforementioned variables 70 GeV < m`` < 110
GeV, pT,`` > 160 GeV, �R`` > 0.2, pT,fatjet > 60 GeV,
95 GeV < mh < 155 GeV, �Rbi,`j > 0.4 and /ET < 30
GeV. Because Z+jets and tt̄ are much less significant
than Zbb̄, we train the boosted decision trees only with
the SM qq̄-initiated Zh and Zbb̄ samples using the follow-
ing variables: pT of the two isolated leptons, �R between
pairs of b-subjets and isolated leptons, between the two
isolated leptons and between the hardest two b-subjets
in the Higgs fatjet, the reconstructed Z-boson mass and
its pT , �� separation between the fatjet and the recon-
structed Z-boson, /ET , mass of the reconstructed Higgs
jet and its pT , pT of the two b-tagged filtered subjets, the
ratio of their pT and the rapidity of the Higgs jet. We
ensure that we do not have variables which are ⇠ 100%
correlated but we retain all other variables. Because our
final distribution of interest is the invariant mass of the
Zh-system, we do not consider it as an input variable.
We use the TMVA [56] framework to train our samples and
always ensure that the Kolmogorov-Smirnov statistic is
at least of the order ⇠ 0.1 in order to avoid overtrain-
ing of the samples [57]. We find that the aforementioned
ratio increases to ⇠ 0.50 upon using the boosted deci-
sion tree algorithm showing that a further optimisation
of the cut-based analysis was necessary. Finally, we test
all our samples with the training obtained from the SM
qq̄ initiated Zh and the Zbb̄ samples.

To distinguish between the EFT signal and the irre-
ducible SM Zh(bb̄) background we utilise the growth of
the EFT cross-section at high energies. The e↵ects are
readily seen in the MZh distribution, our observable of
interest. In Fig. 1 we show the di↵erential distribution
with respect to this variable for the EFT signal as well
as the di↵erent backgrounds for an integrated luminosity
of 300 fb�1. For the EFT signal we take a point that can
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FIG. 1: The di↵erential distribution of events at an integrated
luminosity of 300 fb�1 with respect to MZh for the EFT
signal as well as the di↵erent backgrounds. For the EFT
signal we have taken the point {g

h

ZuL
, g

h

ZdL
, g

h

ZuR
, g

h

ZdR
} =

{�0.005, 0.0001,�0.010, 0.005} which is allowed by the LEP
bounds.

be excluded in our analysis but is well within the LEP
allowed region. We see that the EFT cross-section keeps
growing with energy, but much of this growth is unphysi-
cal at energies above the cut-o↵, i.e., MZh > ⇤, where ⇤
is the cut-o↵ evaluated as described below Eq. (10) and
shown by a vertical line in Fig. 1. For our analysis we
dropped all events above this cut-o↵. For MZh < ⇤, the
EFT deviations are never larger than an O(1) factor with
respect to the SM background as expected on general
grounds. Note, however, that even for MZh < ⇤, even
though the underlying anomalous couplings, gh

Zf
, are per-

mille to percent level, the fractional deviations are much
larger because of the energy growth of the BSM rate. To
make full use of the shape deviation of the EFT signal
with respect to the background, we perform a binned log
likelihood analysis assuming a 5% systematic error. The
likelihood function is taken to be the product of Poisson
distribution functions for each bin with the mean given
by the number of events expected for a given BSM point.
To account for the 5% systematic error we smear the
mean with a Gaussian distribution. To obtain the pro-
jection for the 95% CL exclusion curve we assume that
the observed number of events agrees with the SM.

Discussion

Considering only the SM-BSM interference term, we
find the per-mille level bounds,

g
h

Zp 2 [�0.004, 0.004] (300 fb�1)

g
h

Zp 2 [�0.001, 0.001] (3000 fb�1). (11)

Using Eq. (10) the above bounds can be translated to
a lower bound on the scale of new physics given by 2.4
TeV (4.4 TeV) at 300 fb�1 (3000 fb�1). One can now
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Figure 1: Bounds from LEP [15], run-1 LHC (which includes 20 fb�1 at 8TeV and 3 fb�1 at

13TeV) [16], and the expected 95% CL reach from fully leptonic WZ, on the high-energy

primary parameter a(3)q as a function of the new physics scale M . See section 3.2.4 for a

detailed description of the figure.

amplitude growth can be smoothly saturated at that scale, or display a resonant peak that

one could more e↵ectively see by dedicated resonance searches. In no case it will display the

growing with energy behavior predicted by the EFT, making our search strategy ine↵ective.

Accurate experimental measurements that are sensitive to relatively small BSM e↵ects, still

performed at high energy such as to exploit the enhancement as much as possible, are needed

in order to overcome this potential limitation.

We can quantitatively illustrate this point by anticipating some of our results, reported in

figure 1. The figure shows the 95% CL reach, in the WZ production process, on one of our

“high-energy primary” parameters (a(3)q , introduced in section 2) that describe growing-with-

energy e↵ects in the amplitude for diboson production. In particular, in the WZ channel

�A(q̄q0 ! WZ) ⇠ a(3)q E2 . (1)

The reach on a(3)q is displayed as a function of the cuto↵ scaleM , and it is obtained by including

in the analysis only events that occur at a center of mass energymwz belowM , i.e., events that

originate in an energy regime where the EFT prediction is trustable and the energy growth

is physical. The di↵erent lines correspond to di↵erent assumptions about the systematic

relative uncertainty in the experimental measurement of the di↵erential cross-section and in

the theoretical prediction of the SM contribution. The “�syst = 100%” curve corresponds to an

inaccurate determination of the cross-section, which is only sensitive to order one departures

from the SM. In the figure, the reach on a(3)q is compared with theoretical expectations on the

relation between a(3)q and M . The line “Fully Strong” corresponds to the rather implausible

(although, strictly speaking, allowed) physical situation where all the particles involved in
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colliders can hardly compete with lepton colliders for pole observable. However, due to the enhancement
of the kinematic distributions with respect to the corresponding SM ones at high energy, hadron colliders
are particularly suited to study off-pole observables like W and Y . Deviations from the SM proportional
to W and Y can be parametrised through the two operators from table 1,

�
W

2m2
W

O2W , �
Y

2m2
W

O2W (90)

They modify the neutral and charged gauge boson propagators as
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Studying the tails of the invariant mass distribution of two leptons and of the transverse mass of lepton-
neutrino, one can set constraints on these observables. For details on the procedure see ref. [438], also
extended to di-jet and multi-jet analyses in ref.s [439, 440]. The prospect results for the HL-LHC and
HE-LHC are shown in fig. 96

Fig. 96: Left: LHC and HL-LHC. Right: HE-LHC

4.5 Testing the universal Higgs non-linearity65

In this section we motivate precision measurements on the tensor structures of one Higgs couplings with
two electroweak gauge bosons (HVV) and two Higgses couplings with two electroweak gauge bosons
(HHVV) in HE/HL LHC. There exist special relations between HVV and HHVV couplings in composite
Higgs models that are universal, independent of the symmetry breaking pattern invoked in a particular
model. These "universal relations" are controlled by a single input parameter, the decay constant f
of the pseudo-Nambu-Goldstone Higgs boson. Testing the universal relations requires measuring the
tensor structures of HVV and HHVV couplings to high precision. In particular, HHVV interactions

65 Contacts: D. Liu, I. Low, Z. Yin
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Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. See text
for details, in particular regarding the CEPC results.

sets some of the most important constraints in composite Higgs models), this is an issue that should be carefully studied at644

hadron colliders, as it will become (even more) relevant at the end of the HL-LHC era.645

A meaningful interpretation of these results in terms of a broad class of composite Higgs models can be obtained under the646

assumptions leading to the dependence of the Wilson coefficients on new physics coupling, g?, and mass, m?, described in647

Eq. (20) and below (i.e. we assume cg,g and cfV,3V are loop suppressed in yt and g?, respectively). In Figure 7 we translate648

the results of the fit in Figure 6 in terms of the 95% probability constraints in the (g?,m?) plane under such assumptions, and649

setting all O(1) coefficients exactly to 1, i.e.650
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We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show651

the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by652

the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by653

several of the operators in (19) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are654

mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar655

constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak656

precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the657

new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing658
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• Studied using a SILH-like effective Lagrangian (applied to CH models):

Indirect constraints on Composite Higgs models

Simplified CH benchmark: 1 coupling (g*) - 1 scale (m*)
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Figure 7. (Left) 2-s exclusion regions in the (g?,m?) plane from the fit presented in Figure 6, using the SILH
power-counting described in Eq. (20) and below (solid regions). Dashed lines indicate the regions constrained by the
corresponding low-energy runs (or FCC-ee only for the case of the FCC project). (Right) The same comparing the results from
the global fit with the constraints set by some of the operators individually, for the illustrative case of the
HL-LHC+FCC-ee/eh/hh. In this case, the constraints from the on-shell Higgs measurements mainly affect Of and Oy f .

In this section we discuss more in detail the impact of the two types of SM theory errors described above, from the point
of view of the calculations of the predictions for Higgs observables. This will be done both within the k framework and also
in the context of the EFT results. For the results from the k-framework we will use the most general scenario considered in
Section 3.1, i.e. kappa-3, which allows non-SM decays. On the EFT side, we will use the scenario SMEFTPEW, where the
uncertainty associated with the precision of EWPO has already been “factorized”. In this scenario each fermion coupling is
also treated separately, thus being sensitive to the uncertainties in the different H ! f f̄ decay widths. Finally, we will also
restrict the study in this subsection to the case of future lepton colliders only (we always consider them in combination with the
HL-LHC projections. For the latter we keep the theory uncertainties as reported by the WG2 studies [13]).

In Table 10 we show the results of the k fit for the benchmark scenario kappa-3, indicating the results obtained includ-
ing/excluding the different sources of SM theory uncertainties. Similarly, Table 11 shows the results of the EFT fit for the
benchmark scenario SMEFTPEW. For the EFT results the impact of the different theory uncertainties is also illustrated in
Figure 8. As can be seen, if the SM errors were reduced to a level where they become sub-dominant, the experimental precision
would allow to test deviations in some of the couplings at the one per-mille level, e.g. the coupling to vector bosons at CLIC
in the SMEFT framework (the presence of extra decays would however reduce the precision to the 0.4% level, as shown in
the kappa-3 results). The assumed precision of the SM theory calculations and inputs, however, prevents reaching this level
of sensitivity. The most notable obstacle to achieve this close to per-mille level of precision are the intrinsic uncertainties
for the e+e� ! ZH and, especially, in e+e� ! Hn̄n , estimated to be ⇠0.5%. In reaching this level of theoretical precision
it was assumed that predictions at NNLO in the EW coupling for both processes will be available. This is within reach for
ZH production, but it may be more challenging for e+e� ! Hn̄n (and H !VV ⇤ ! 4 f ). However, with enough effort on the
theory side [55–57], this type of uncertainties can be reduced. If the necessary resources are dedicated to develop these types of
calculations, it should be possible to achieve, or even surpass, the required level of precision. This is not the case for the SM
parametric errors, which depend on the experimental measurements of the corresponding input parameters. From the results of
the fits, the largest effect of this type of uncertainty on the determination of the fermion couplings affects the effective coupling
of the bottom to the Higgs. The corresponding SM error in H ! bb̄ depends on the precision of the bottom quark mass, whose
projected future determination was assumed to be ⇠ 13 MeV. Taking into account the projected improvements from Lattice
QCD calculations, this should be a conservative estimate [55]. Other parametric uncertainties, e.g. in H ! cc̄,gg and associated
with mc and aS, are larger than the one for H ! bb̄ but have a smaller effect in the results due to the also larger experimental
errors expected in the corresponding channels. From the point of view of the Higgs decays into vector bosons, the predictions
of H ! ZZ⇤,WW ⇤ have a strong dependence on the value of the Higgs mass. It it therefore important to accompany the precise
measurements of the Higgs couplings with equally precise measurements of the Higgs mass, to the level of 10 MeV. This would
be possible at 240/250 GeV lepton colliders but more challenging at CLIC, where the final precision on MH is expected at the
level of 20-30 MeV (see Section 7). In the kappa-framework, the fact that the dependence of the production e+e� Higgs cross
sections on MH is less severe helps to reduce the impact of the MH uncertainty in the CLIC results. This is no longer the case
once we move to the more general description of the SMEFT. In that case, non-SM like interactions contribute to the effective
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Indirect constraints on SILH Lagrangian
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Figure 6. Global fit to the EFT operators in the Lagrangian (19). We show the marginalized 68% probability reach for each
Wilson coefficient ci/L2 in Eq. (19) from the global fit (solid bars). The reach of the vertical “T” lines indicate the results
assuming only the corresponding operator is generated by the new physics. The HE-LHC results correspond to the S02
assumptions for the theory systematic uncertainties in Higgs processes [13].

Of course, in the interpretation of any measurement in a particular extension of the SM, there are also errors associated with the
missing corrections in the expansion(s) including the new physics parameters. In the particular case of the EFT framework,
these would come from NLO corrections in the perturbative expansion including dimension-6 interactions or, from the point
of view of the EFT expansion, from q4/L4 effects coming from either the square of the dimension-6 contributions to the
amplitudes, or the SM interference with amplitudes involving dimension-8 operators or double insertions of the dimension-6
ones. Note that all these corrections affect the interpretation of a measurement in terms of pinpointing what is the source of the
deformation from the SM, i.e. which particular operator and how large its coefficient can be, but not on the size of the overall
deformation per se. The latter is only controlled by the SM theoretical uncertainty. Because of that, and in the absence of a
fully developed program including such contributions in the SMEFT framework, we restrict the discussion in this section to SM
uncertainties only.

In the previous sections the results for future colliders after the HL/HE-LHC era were presented taking into account
parametric uncertainties only. This was done to illustrate the final sensitivity to BSM deformations in Higgs couplings, as
given directly by the experimental measurements of the different inputs (i.e. Higgs rates, diBoson measurements, EWPO or the
processes used to determine the values of the SM input parameters). On the other hand, for this scenario to be meaningful, it
is crucial to also study the effect in such results of the projections for the future intrinsic errors. This is needed to be able to
quantify how far we will be from the assumption that such intrinsic errors become subdominant and, therefore, which aspects
of theory calculations should the theory community focus on to make sure we reach the maximum experimental sensitivity at
future colliders.

25/75

Figure 4. Sensitivity at 68% probability to deviations in the different EW couplings from a global fit to the projections
available at each future collider project. Results obtained within the SMEFT framework in the benchmark SMEFTND. See text
for details, in particular regarding the CEPC results.

sets some of the most important constraints in composite Higgs models), this is an issue that should be carefully studied at644

hadron colliders, as it will become (even more) relevant at the end of the HL-LHC era.645
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We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show651

the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by652
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S(�) = S0(�) +
P

i ciSi(�) (9)

S(�) = d�
d�

(10)

S0(�) = d�
d�

��
SM

(11)

ciSi(�) = d�
d�

��
Interf . SM�NP

(12)

Oi =
P

k2events

Si(�k)
S0(�k)

(13)

cov(ci, cj) =
⇣
L
R
d�Si(�)Sj(�)

S0(�)

⌘�1

+ O(ck) (14)

L �! "L (15)

p
s = MZ : e+e�

! Z ! X (16)

p
s > MZ : e+e�

! �Z ! �X (17)
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• Inputs included in the fits (from ESU documents and refs. therein):


No full EFT studies available for WW processes at future lepton colliders

(Except for CLIC)



Global EFT study of WW production

• Current projections based on sensitivity to aTGC ONLY in differential 
angular distributions (ignoring correlations between bins)
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Figure 13: A comparison of the reach on aTGCs from the binned method used in ref. [67]
and the optimal observables for the diboson measurement at CEPC 240 GeV. To match
ref. [67], we use both the total rate and the normalized distributions of the semileptonic
channel, and impose the TGC dominance assumption. A 80% signal selection e�ciency is
assumed in ref. [67].

is achieved using optimal observables, which reduced the strong correlation between them
from ≠0.9 (of the binned distribution method) to ≠0.6. The improvement is still outstand-
ing even with the conservative 50% e�ciency used in our analysis. Note however that they
remain degeneracies between Higgs and EW parameters that cannot be resolved with WW

measurements alone, even with optimal use of the available di�erential information.

Treatment of Higgsstrahlung production The three relevant angles in the process
e+e≠

æ hZ, Z æ ¸+¸≠ are the production polar angle and the Z decay polar and azimuthal
angles. In refs. [80, 81], the information contained in angular distributions was extracted
using asymmetries. While this approach captures all the essential information, the corre-
lations among the asymmetry observables are omitted, which results in a reduction in the
sensitivity. We instead construct statistically optimal observables from these three angles
using equation (D.6) and (D.7), keeping only the linear CP-even EFT dependences. We
use only the h æ bb̄ and Z æ e+e≠/µ+µ≠ channel, which is almost background free after
the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the
Higgs and reducing backgrounds. The flat distribution of scalar decay product does not
contain useful information.

E Input for the global fits

In this section, we give a list of inputs that we used in the fits for the various colliders.
The same inputs can also be provided as configuration files for HEPfit on request which
can be used for reproducing our results. While we try to give a complete list of inputs in
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the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the
Higgs and reducing backgrounds. The flat distribution of scalar decay product does not
contain useful information.

E Input for the global fits

In this section, we give a list of inputs that we used in the fits for the various colliders.
The same inputs can also be provided as configuration files for HEPfit on request which
can be used for reproducing our results. While we try to give a complete list of inputs in
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is achieved using optimal observables, which reduced the strong correlation between them
from ≠0.9 (of the binned distribution method) to ≠0.6. The improvement is still outstand-
ing even with the conservative 50% e�ciency used in our analysis. Note however that they
remain degeneracies between Higgs and EW parameters that cannot be resolved with WW

measurements alone, even with optimal use of the available di�erential information.
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angles. In refs. [80, 81], the information contained in angular distributions was extracted
using asymmetries. While this approach captures all the essential information, the corre-
lations among the asymmetry observables are omitted, which results in a reduction in the
sensitivity. We instead construct statistically optimal observables from these three angles
using equation (D.6) and (D.7), keeping only the linear CP-even EFT dependences. We
use only the h æ bb̄ and Z æ e+e≠/µ+µ≠ channel, which is almost background free after
the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the
Higgs and reducing backgrounds. The flat distribution of scalar decay product does not
contain useful information.
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Global EFT study of WW production

• Current projections based on sensitivity to aTGC ONLY in differential 
angular distributions (ignoring correlations between bins)


• In JHEP12 (2019) 117 we prepared a new sensitivity study using full info 
about each event in the formalism of “optimal statistical observables” (OO):


• We consider all possible BSM deformations within the dim-6 SMEFT 
framework


• Default method only accounts for statistical sensitivity ⇒ Compensate 
omission of systematics via conservative selection efficiency ε
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WW production at lepton colliders
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using asymmetries. While this approach captures all the essential information, the corre-
lations among the asymmetry observables are omitted, which results in a reduction in the
sensitivity. We instead construct statistically optimal observables from these three angles
using equation (D.6) and (D.7), keeping only the linear CP-even EFT dependences. We
use only the h æ bb̄ and Z æ e+e≠/µ+µ≠ channel, which is almost background free after
the selection cuts. The ‰2 is computed analytically, including only statistical uncertainties
with a universal 40% signal e�ciency. Note that the bb̄ pair is only used for tagging the
Higgs and reducing backgrounds. The flat distribution of scalar decay product does not
contain useful information.
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Global fit to EW/Higgs projections
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EFT Higgs couplings and aTGC: dependence on WW projections
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Figure 6: Impact of diboson measurement precision on Higgs and triple-gauge couplings.
Our default assumption, adopted in figure 2, is also shown here as dark-shaded bars. It
corresponds to an overall e�ciency ‘ of 50% (see section 2.3). The results obtained with
an ideal 100% and a lower 1% e�ciency are shown as vertical lines and light shaded bars
respectively. The run scenarios of the future lepton colliders are summarized in figure 1.

play of Higgs and EW measurements. To avoid showing a large set of 28 ◊ 28 matrices,
we present a scheme-ball illustration in figure 5, which highlights large correlations with
lines connecting pairs of couplings in its inner circle. The circular collider projections in-
clude both Z-pole and WW threshold measurements. At linear colliders, the EW and the
Higgs sector appear clearly connected due to the absence of new Z-pole measurements.
Strong correlations are present between aTGCs and other electroweak couplings. This
clearly shows again that the electroweak, triple-gauge, and Higgs sectors of the e�ective
field theory would become significantly entangled with the advent of future lepton colliders.

We further investigate the impacts of diboson measurements and beam polarizations
in the rest of this section.

3.1 Impact of W W measurements

As explained in section 2.3, our prospects for WW measurements neglect backgrounds,
detector e�ects and systematic uncertainties but assume a conservative overall e�ciency
‘ of 50%. We examine in figure 6 the impact of di�erent assumptions for ‘ on Higgs and
triple-gauge coupling prospects. This exercise also more generally allows us to visualize
the constraining power of diboson measurements. In comparison with the default ‘ =
50% prospects shown as dark-shaded bars, the ideal ‘ = 100% and pessimistic ‘ = 0.01
ones are respectively shown with vertical lines and light shaded columns. The results in
figure 6 clearly show that WW measurements dominate the reach on aTGCs. A sizeable
impact is also observed on the ”gZZ

H
and ”gW W

H
couplings constrained by measurements

in which aTGCs also enter. It is more severe at the CEPC and FCC-ee when only Higgs
measurements at 240 GeV are included. Reducing ‘ from 50% to 1% worsens diboson
measurement precision by a factor of


0.5/0.01 ƒ 7 and increases the uncertainties on

”gZZ

H
and ”gW W

H
by a factor of about 2. This also indirectly a�ects ”gbb

H
and ”g··

H
. Including

higher energy runs helps reducing the impact diboson measurements. Higgs measurements
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clearly shows again that the electroweak, triple-gauge, and Higgs sectors of the e�ective
field theory would become significantly entangled with the advent of future lepton colliders.
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Influence of the assumptions in the OO study of WW production in the extraction of H couplings & aTGC
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• The previous study of ee →WW uses a full EFT parameterization and is “optimal” 
from the point of view of statistical uncertainties only. Assessing the potential of 
the method in a  more realistic way would require:


• Proper treatment of exp. systematics


• Including the effect of theory uncertainties 


• Differential observables: ESU studies focused mostly on inclusive H 
observables. Cannot exploit all info of the kinematical distributions available at 
future colliders


• STXS, Boosted H + j, …


• High-E probes of EFT effects that grow with the energy:

• No full EFT parameterization in ESU studies (only the leading growing-

with-E effects)


• Impact of SMEFT uncertainties: NLO, (dim-6)2 vs. dim 8, …


• Vector boson scattering: not included in ESU studies


• CP-violating observables: not explored in the ESU SMEFT fits


Future directions
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Other areas to go beyond the SMEFT studies prepared for the ESU

HKUST IAS HEP Program Conference 
Hong Kong, January 21, 2020

Jorge de Blas 
IP3 - Durham University

Contact us if you are interested in helping with this

☚ Experimental input would be great here  

☚ See talk by W. Shepherd  



• EW precision observables: 

• Clarify systematics for heavy flavor observables (Aq, Rq)


• Exploit EW measurements outside the Z-pole (low and high energy): requires 
adding 4-fermion operators into the global fit


• Non-universality: combine with flavor data to explore more flavor scenarios 
consistently


• Top sector only explored superficially: 

• Consider effects from 4-fermion operators or top dipole operators


• Exploit NLO effects of Top EW couplings in H/diBoson 


• BSM interpretation of SMEFT limits: 

• ESU: done for several simple scenarios and mostly taking the SMEFT limits 
assuming only 1 operator at a time


• Explore more BSM interpretations (matching SMEFT/UV), and in particular 
those related to important physics questions, e.g. baryogenesis


• Pay attention to SMEFT fit correlations


• Study other future collider facilities, e.g. High-E muon collider?


Future directions
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HKUST IAS HEP Program Conference 
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Jorge de Blas 
IP3 - Durham University

☚ Not reported in ESU reports but  
  crucial for BSM interpretation  
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Figure 1. Time line of various collider projects starting at time T0. Given are the luminosity values and energies, also shown
in Table 1. For the clarification of the meaning of a year of running, see the caption to Table 1. Figure 13 in the appendix
reworks this figure using the earliest possible start date (i.e. the calendar date of T0) given by the proponents.

At the heart of the Higgs physics programme is the question of how the Higgs boson couples to Standard Model elementary
particles. Within the SM itself, all these couplings are uniquely determined. But new physics beyond the SM (BSM) can modify
these couplings in many different ways. The structure of these deformations is in general model-dependent. One important
goal of the Higgs programme at the future colliders is to identify, or least constrain, these deformations primarily from the
measurements the Higgs production cross section, s , times decay branching ratio, BR)2. Ultimately, these studies will be used
to asses the fundamental parameters of the new physics models. For the time being, in the absence of knowledge of new physics,
we need to rely on a parametrisation of our ignorance in terms of continuous deformations of the Higgs boson couplings.
Different assumptions allow to capture different classes of new physics dynamics. First, in the so-called k-framework [13, 14],
often used to interpret the LHC measurements, the Higgs couplings to the SM particles are assumed to keep the same helicity
structures as in the SM. While it offers a convenient exploration tool that does not require other computations than the SM
ones and still captures the dominant effects of well motivated new physics scenarios on a set of on-shell Higgs observables,
the k-framework suffers from some limitations that will be discussed later and it includes some biases that will prevent to
put the Higgs programme in perspective with other measurements, see e.g. the discussion in Ref. [15] and at the beginning
of Section 3. An alternative approach, based on Effective Field Theory (EFT), considers new Higgs couplings with different
helicity structures, with different energy dependence or with different number of particles. They are not present in the SM but
they can potentially generated by new heavy degrees of freedom.

Furthermore, the sensitivity of the data to the Higgs self-coupling is analysed based on single-Higgs and di-Higgs production
measurements by future colliders. Due to lack of access to the simulated data of the collaborations, in particular differential
kinematical distributions, it is not possible in this case to perform a study with similar rigor as the analysis of the single-Higgs-
coupling presented above.

The Higgs width determination is also discussed as is the possible decay of the Higgs bosons into new particles that are
either "invisible" (observed through missing energy - or missing transverse energy) or "untagged", to which none of the Higgs
analyses considered in the study are sensitive. Rare decays and CP aspects are also discussed.

All colliders have provided extensive documentation on their Higgs physics programme. However, sometimes different
choices are made e.g. on which parameters to fit for and which to fix, what theoretical uncertainties to assume, which operators
to consider in e.g. the EFT approach. This would lead to an unfair comparison of prospects from different future colliders,
with consequent confusing scientific information. In this report, we aim to have a clear, reasonable and unique approach to the
assumptions made when comparing the projections for the future.

In general, one should not over-interpret 20% differences between projected sensitivities for partial widths of different
future projects. In many cases, these are likely not significant. For instance, CEPC and FCC-ee at

p
s = 240 GeV expect

2The Higgs couplings could be constrained less directly from processes with no Higgs in the final state or without even a non-resonant Higgs. But the main
focus of the study presented in this report will be on the information obtained from the measured s ⇥BR. Still, note that, at lepton colliders, the ZH associated
production can be measured without the decay of the decay of the Higgs.

4/58

C Inputs

In this section we report some information relative to the inputs to the strategy process. Fig. 13 shows the start date and extent
of the runs of proposed future projects, using the earliest start time provided in the submitted documentation.

Figure 13. Sketch of timeline of various collider projects starting at the "earliest start time" stated in the respective documents.
For FCC-eh/hh this figure assumes that it is not preceeded by FCC-ee. If it comes after FCC-ee it would start in the early 2060s.

The uncertainties on inputs for all the colliders used in our analysis are listed in Tables 19-23. In all cases the relative
uncertainty on the measurement is given corresponding to a Gaussian 1s uncertainty.

Table 19. Inputs used for CEPC and FCC-ee projections. All uncertainties are given as fractional 68% CL intervals and are
taken to be symmetric. The upper limits are given at 68% CL.

FCC-ee240 FCC-ee365 CEPC
dsZH 0.005 0.009 0.005
d µZH,bb 0.003 0.005 0.003068
d µnnH,bb 0.031 0.009 0.029991
d µZH,cc 0.022 0.065 0.0326
d µZH,gg 0.019 0.035 0.0127
d µZH,WW 0.012 0.026 0.0098
d µZH,ZZ 0.044 0.12 0.0509
d µZH,tt 0.009 0.018 0.0082
d µZH,gg 0.09 0.18 0.0684
d µZH,µµ 0.19 0.40 0.171
d µZH,Zg 0.1568
d µnnH,cc 0.10
d µnnH,gg 0.045
d µnnH,ZZ 0.10
d µnnH,tt 0.08
d µnnH,gg 0.22
BRBSM

H,inv <0.0015 <0.003 <0.0015

53/58

Earliest start time in ESU documents

Starting time at T0

Note: Different definitions of “Year”: ILC 1.6 x 107 sec, FCC-ee/CLIC: 1.2 x 107 sec, CEPC: 1.3 x 107 sec

Future Particle Colliders
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Results in the SMEFT-framework (Higgs)
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Fig. 3.9: 68% probability reach on Higgs couplings and aTGC at the different future colliders
from the Global fit SMEFTND. For details, see Ref. [39].

second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611 [?]
is based on the direct search for H ! e+e�. A study at the FCCee [?] has assessed the reach
of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sec. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.
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Fig. 3.9: 68% probability reach on Higgs couplings and aTGC at the different future colliders
from the Global fit SMEFTND. For details, see Ref. [39].

second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611 [?]
is based on the direct search for H ! e+e�. A study at the FCCee [?] has assessed the reach
of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sec. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.

-WARNING: HE improvement relies on improvement of theory uncertainties

-WARNING: LHeC achieves <1% precision for some H rates. However, in EFT framework  
precision on HVV requires extra info (e.g. aTGC, angular). Results in current fit limited by  
LEP2 precision of aTGC (e.g. 10x LEP2 precision would bring LHeC HVV down to 0.7%)

-Lepton colliders can achieve ~per-mille accuracy. Difference is how long it may take  
to get there:  

CLIC380 < ILC250~CEPC~FCCee240 < ILC500~CLIC~FCCee365 
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Fig. 3.9: 68% probability reach on Higgs couplings and aTGC at the different future colliders
from the Global fit SMEFTND. For details, see Ref. [39].

second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611 [?]
is based on the direct search for H ! e+e�. A study at the FCCee [?] has assessed the reach
of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sec. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.

-Top Yukawa not directly accessible to low-E 
lepton colliders.

-Accessible above 500 GeV (ILC, CLIC).  
Precision similar to HL-LHC.
-1% precision possible at FCC-hh 
WARNING: In all cases, ttH requires knowledge  

of, at least, other Top interactions
Model-Independent Top: Advantage for CLIC

- e+e- coll: Tau and Bottom Yukawa (0.5% - 1%)
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Fig. 3.9: 68% probability reach on Higgs couplings and aTGC at the different future colliders
from the Global fit SMEFTND. For details, see Ref. [39].

second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611 [?]
is based on the direct search for H ! e+e�. A study at the FCCee [?] has assessed the reach
of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sec. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.

-Charm coupling not directly accessible with good precision at HL-LHC/HE-LHC. 
Available at percent level from ep (LHeC) and Lepton colliders. 

- Muon coupling: Rare decay → Statistically limited at ep/Lepton Colliders:  
 Sub-percent precision at FCC-ee/eh/hh via hh ratios of BR  

(Relies on knowledge of H →ZZ* from FCC-ee)
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Fig. 3.9: 68% probability reach on Higgs couplings and aTGC at the different future colliders
from the Global fit SMEFTND. For details, see Ref. [39].

second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611 [?]
is based on the direct search for H ! e+e�. A study at the FCCee [?] has assessed the reach
of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sec. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.

-Percent precision in effective Hgg interaction via decays at ep/Lepton colliders 

-Rare decays statistically limited at ep/Lepton Colliders: sub-percent  
precision at FCC-ee/eh/hh via hh ratios of BR
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Figure 5. 68% probability reach on Higgs couplings and aTGC values for the different lepton colliders from the Global fit
SMEFTND, compared with the results obtained assuming infinite precision for the EWPO (scenario SMEFTPEW). The
difference (partially) illustrates the impact of the EW constraints on the Higgs results. See text for discussion and caveats which
apply to this study. The measurements based on Z bosons from radiative return at ILC and CLIC are included in the default fit,
and the horizontal red marks indicate the coupling reach when additionally a dedicated Z-pole run is taken.

We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show
the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by
the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by
several of the operators in (19) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are
mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar
constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak
precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the
new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing
weakly coupled scenarios.

3.5 Impact of Standard Model theory uncertainties in Higgs calculations
As important as it is to have very precise experimental measurements of the different Higgs processes, it is also fundamental
from the point of view of their physical interpretation to have theoretical calculations for the predictions of such processes
with comparable or better precision. In this sense, to quantify to what extent an experimental measurement with uncertainty
dexp can be translated into a constraint on new physics,17 one needs to know the corresponding uncertainty dSM for the SM
prediction. In order to extract the maximum experimental information, ideally, dSM ⌧ dexp. The sources of the SM uncertainty
are typically separated in two types of contributions:

• Parametric theory uncertainties (ThPar). For a given observable O, this is the error associated to the propagation of the
experimental error of the SM input parameters to the SM prediction OSM.

• The second source of uncertainty is due to the fact that, in practice, OSM is only known to a finite order in perturbation
theory. The estimate of the net size associated with the contribution to OSM from missing higher-order corrections is
usually referred to as intrinsic theory uncertainty (ThIntr).

17Or, equivalently, to what extent a measurement agrees with the SM.
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Figure 5. 68% probability reach on Higgs couplings and aTGC values for the different lepton colliders from the Global fit
SMEFTND, compared with the results obtained assuming infinite precision for the EWPO (scenario SMEFTPEW). The
difference (partially) illustrates the impact of the EW constraints on the Higgs results. See text for discussion and caveats which
apply to this study. The measurements based on Z bosons from radiative return at ILC and CLIC are included in the default fit,
and the horizontal red marks indicate the coupling reach when additionally a dedicated Z-pole run is taken.

We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show
the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by
the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by
several of the operators in (19) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are
mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar
constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak
precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the
new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing
weakly coupled scenarios.

3.5 Impact of Standard Model theory uncertainties in Higgs calculations
As important as it is to have very precise experimental measurements of the different Higgs processes, it is also fundamental
from the point of view of their physical interpretation to have theoretical calculations for the predictions of such processes
with comparable or better precision. In this sense, to quantify to what extent an experimental measurement with uncertainty
dexp can be translated into a constraint on new physics,17 one needs to know the corresponding uncertainty dSM for the SM
prediction. In order to extract the maximum experimental information, ideally, dSM ⌧ dexp. The sources of the SM uncertainty
are typically separated in two types of contributions:

• Parametric theory uncertainties (ThPar). For a given observable O, this is the error associated to the propagation of the
experimental error of the SM input parameters to the SM prediction OSM.

• The second source of uncertainty is due to the fact that, in practice, OSM is only known to a finite order in perturbation
theory. The estimate of the net size associated with the contribution to OSM from missing higher-order corrections is
usually referred to as intrinsic theory uncertainty (ThIntr).

17Or, equivalently, to what extent a measurement agrees with the SM.
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Figure 5. 68% probability reach on Higgs couplings and aTGC values for the different lepton colliders from the Global fit
SMEFTND, compared with the results obtained assuming infinite precision for the EWPO (scenario SMEFTPEW). The
difference (partially) illustrates the impact of the EW constraints on the Higgs results. See text for discussion and caveats which
apply to this study. The measurements based on Z bosons from radiative return at ILC and CLIC are included in the default fit,
and the horizontal red marks indicate the coupling reach when additionally a dedicated Z-pole run is taken.

We focus the comparison, again, on the full physics program at each future collider project (solid regions), but also show
the region delimited by the low energy runs, or the FCC-ee for the case of the FCC project (the boundaries are indicated by
the dashed lines). In the right panel of that figure we also show, for illustration purposes, the individual constraints set by
several of the operators in (19) for the FCC fit. The modifications of the on-shell Higgs properties discussed in this report are
mainly controlled, within the SILH assumptions, by the contributions to the operators Of and Oy f , both of which set similar
constraints in the global fit for this collider. These give the leading constraints in strongly coupled scenarios. Electroweak
precision measurements, on the other hand, are more affected by a combination of OW,B and set bounds independently of the
new physics coupling. Finally, some of the high-energy probes included in the analysis provide the most efficient way of testing
weakly coupled scenarios.

3.5 Impact of Standard Model theory uncertainties in Higgs calculations
As important as it is to have very precise experimental measurements of the different Higgs processes, it is also fundamental
from the point of view of their physical interpretation to have theoretical calculations for the predictions of such processes
with comparable or better precision. In this sense, to quantify to what extent an experimental measurement with uncertainty
dexp can be translated into a constraint on new physics,17 one needs to know the corresponding uncertainty dSM for the SM
prediction. In order to extract the maximum experimental information, ideally, dSM ⌧ dexp. The sources of the SM uncertainty
are typically separated in two types of contributions:

• Parametric theory uncertainties (ThPar). For a given observable O, this is the error associated to the propagation of the
experimental error of the SM input parameters to the SM prediction OSM.

• The second source of uncertainty is due to the fact that, in practice, OSM is only known to a finite order in perturbation
theory. The estimate of the net size associated with the contribution to OSM from missing higher-order corrections is
usually referred to as intrinsic theory uncertainty (ThIntr).

17Or, equivalently, to what extent a measurement agrees with the SM.
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Interplay between EW and Higgs

42

Impact of EWPO (Z pole measurements)  in Higgs coupling sensitivity

Figure 5: A scheme-ball illustration of the correlations between Higgs and EW sector
couplings. The Z-pole runs are included for both FCC-ee and CEPC. Projections from
HL-LHC and measurements from LEP and SLD are included in all scenarios. The outer
bars give the one-sigma precision on the individual coupling (see tables 1 and 2).

lepton collider is built, which naturally brings significant improvements either from direct
Z-pole measurements or from measurements using Z-radiative return. Diboson measure-
ments accessible to all future lepton colliders have a dramatic impact on our knowledge
of the couplings of W -boson to the leptons. The lower energy runs at circular colliders
provide the best reaches on these couplings given the higher e+e≠

æ WW production rates
and luminosities. Runs at the WW production threshold however only play a marginal
role once high luminosities are collected at centre-of-mass energies of 240 GeV and above.

The potential impact of Higgs measurements on EW parameters is assessed by com-
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• Comparison of capabilities to measure the H3 coupling (via single or 
multi Higgs processes) 

di-Higgs ~27% (10%)

The Higgs self-coupling
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Little sensitivity via  
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Figure 11. Sensitivity at 68% probability on the Higgs cubic self-coupling at the various FCs. All values reported correspond
to a simplified combination of the considered collider with HL-LHC. Only numbers for Method (1), i.e. "di-H excl.",
corresponding to the results given by the future collider collaborations, and for Method (4), i.e. "single-H glob." are shown (the
results for Method (3) are reported in parenthesis). For Method (4) we report the results computed by the Higgs@FC working
group. For the leptonic colliders, the runs are considered in sequence. For the colliders with

p
s . 400 GeV, Method (1) cannot

be used, hence the dash signs. Due to the lack of results available for the ep cross section in SMEFT, we do not present any
result for LHeC nor HE-LHeC, and only results with Method (1) for FCC-eh.

improve the precision by about two orders of magnitude, to a 1-2%. For the strange quarks the constraints are about 5-10⇥
the SM value while for the first generation it ranges between 100-600⇥ the SM value. For the latter, future colliders could
improve the limits obtained at the HL-LHC by about a factor of two. For HL-LHC, HE-LHC and LHeC, the determination of
BRunt relies on assuming kV  1. For kg , kZg and kµ the lepton colliders do not significantly improve the precision compared
to HL-LHC but the higher energy hadron colliders, HE-LHC and FCChh, achieve improvements of factor of 2-3 and 5-10,
respectively, in these couplings.

For the electron Yukawa coupling, the current limit ke < 611 [78] is based on the direct search for H ! e+e�. A preliminary
study at the FCC-ee [79] has assessed the reach of a dedicated run at

p
s = mH . At this energy the cross section for e+e� ! H

is 1.64 fb, which reduces to 0.3 with an energy spread equal to the SM Higgs width. According to the study, with 2 ab�1 per
year achievable with an energy spread of 6 MeV, a significance of 0.4 standard deviations could be achieved, equivalent to an
upper limit of 2.5 times the SM value, while the SM sensitivity would be reached in a five year run.

While the limits quoted on kc from hadron colliders (see Table 13) have been obtained indirectly, we mention that progress
in inclusive direct searches for H ! cc̄ at the LHC has been reported from ATLAS together with a projection for the HL-LHC.

Table 13. Upper bounds on the ki for u, d, s and c (at hadron colliders) at 95% CL, obtained from the upper bounds on BRunt
in the kappa-3 scenario.

HL-LHC +LHeC +HE-LHC +ILC500 +CLIC3000 +CEPC +FCC-ee240 +FCC-ee/eh/hh
ku 560. 320. 430. 330. 430. 290. 310. 280.
kd 260. 150. 200. 160. 200. 140. 140. 130.
ks 13. 7.3 9.9 7.5 9.9 6.7 7. 6.4
kc 1.2 0.87 measured directly
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ee: single-Higgs ~34%

di-Higgs ~15%HE-LHC

di-Higgs ~50%HL-LHC



Figure 19. Graphic comparison of the improvement with respect to HL-LHC in the SMEFT-ND framework.

HE-LHC
• Fixed bug in kappa-0 fit that was accidentally imposing the constraint |kV | 1.

• Improved treatment of theory uncertainties, closer to the setup presented in [13]. Results presented in some cases using
both scenarios S2 and S20 in [13].

• Added correlation between theory uncertainties in the combination with HL-LHC.

ILC
• Added inputs from a run at centre-of-mass energy of 1 TeV [4].

• Added the projections for EWPO obtained using radiative return events to the Z pole collected at
p

s = 250 GeV [4].

• Added inputs from a run at the Z pole (Giga Z) [4].

CLIC
• Added the projections for EWPO obtained using radiative return events to the Z pole collected at

p
s = 380 GeV [11].

• Added inputs from a run at the Z pole (Giga Z) [11].

• Updated the effects of the parametric error associated to the Higgs mass determination, assuming the HL-LHC measures
MH with a precision of 20 MeV.

74/75
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Factor 10 improvement  
in many parameters 
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Global EFT study of WW production
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Optimal Statistical Observables (OO)

• Consider a Phase-space distribution linear in some coefficients ci:


• In the limit of large statistics, the observables


provide the most precise statistical information about the coefficients ci 
around the point ci=0, ∀i 

• Idealized (no systematics) ⇒ We compensate omission of systematics via 
conservative selection efficiency ε

Extra Material for talk at the CEPC Workshop November 18-20,
2019

J. de Blasa
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Estimates for SM theory uncertainties used in the ESU studies

A. Freitas et al., arXiv: 1906.05379 [hep-ph]

Table 10: Partial decay widths for the Higgs boson to specific final states and the uncertainties in their cal-
culation [?]. The uncertainties arise either from intrinsic limitations in the theoretical calculation (ThIntr)
and parametric uncertainties (ThPar). The parametric uncertainties are due to the finite precision on the quark
masses, ThPar(mq), on the strong coupling constant, ThPar(↵s), and on the Higgs boson mass, ThPar(MH). The
columns labelled ”partial width” and ”current uncertainty” and refer to the current precision [?], while the pre-
dictions for the future are taken from ref. [?]. For the future uncertainties, the parametric uncertainties assume
a precision of �mb = 13 MeV, �mc = 7 MeV, �mt = 50 MeV, �↵s = 0.0002 and �MH = 10 MeV.

Decay Partial width Projected future unc. ��/� [%]

[keV] ThIntr ThPar(mq) ThPar(↵s) ThPar(mH )

H ! bb̄ 2379 0.2 0.6[ < 0.1] �

H ! ⌧
+
⌧
� 256 < 0.1 � � �

H ! cc̄ 118 0.2 1.0[ < 0.1] �

H ! µ
+
µ

� 0.89 < 0.1 � � �

H ! WW
⇤ 883 . 0.4 � � 0.1‡

H ! gg 335 1.0 � 0.5] �

H ! ZZ
⇤ 108 . 0.3† � � 0.1‡

H ! �� � < 1.0 � � �

H ! Z� 2.1 1.0 � � 0.1‡

†From e
+
e
�

! ZH.
‡For �MH = 10 MeV. Adjusted for Higgs mass precision at CLIC.

[For �mb = 13 MeV, �mc = 7 MeV. (Lattice projection).
]For �↵s = 0.0002. (Lattice projection).

27

Intrinsic TH unc. in production
e.g. e+ e-→Z H 

LO to NLO: 5-10%

Missing 2-loop: O(1%)
 Full 2-loop should  

reduce uncertainty to O(0.1%)

Z width effects relevant  
at this level of precision?

Assessment of TH uncertainty  
may require full 2->3 NNLO

In any case, reducible with  
necessary effort from theory side

Hence the choice of presenting  
main results with parametrics only



Experimental projections

48

Electroweak precision measurements

Table 27. Uncertainty on several observables related to the properties of the electroweak vector bosons. We also list the
uncertainty on the top mass. For dimensionful quantities the absolute uncertainty is given, while relative errors are listed for
dimensionless quantities. A few comments on some particular numbers are in order: a) For hadron colliders the top mass is not
the pole mass. b) For the top mass all lepton colliders require a dedicated top threshold scan to achieve the uncertainty given
here. (For ILC the quoted value comes from a dedicated run at 350 GeV.) c) From direct reconstruction in the ZH run 2-3 MeV
can be achieved [2]. d) In a 4-year dedicated run 2 MeV can be achieved by ILC [137]. e) From t polarization measurements.
f) At circular colliders, for Ab and Ac previous measurement uncertainties were dominated by the physics modelling [138] and
the systematic uncertainty arising from this was only estimated by FCC-ee [135]. When these systematics are set to zero in the
measurements of Ab

FB and Ac
FB the uncertainty in Ab and Ac is controlled by the statistical errors plus the uncertainty on Ae.

This is the setup used for the baseline fits. See discussion in Section 3.4.1 for details. g) Rn ⌘ GZ!inv/GZ!had and
Rinv ⌘ GZ!inv/GZ!``.

Quantity Current HL-LHC FCC-ee CEPC ILC CLIC
Giga-Z 250 GeV Giga-Z 380 GeV

dmtop [MeV] ⇠500 a) ⇠400 a) 20 b) � � 17 b) � 20-22 b)

dMZ [MeV] 2.1 � 0.1 0.5 � � � �
dGZ [MeV] 2.3 � 0.1 0.5 1 � 1 �
dGZ!had [MeV] 2.0 � � � 0.7 � 0.7 �
ds0

had [pb] 37 � 4 5 � � � �

dMW [MeV] 12 7 0.7 1.0 (2-3) c) � 2.4 d) � 2.5
dGW [MeV] 42 � 1.5 3 � � � �

dBRW!en [10�4] 150 � 3 3 � 4.2 � 11
dBRW!µn [10�4] 140 � 3 3 � 4.1 � 11
dBRW!tn [10�4] 190 � 4 4 � 5.2 � 11
dBRW!had[10�4] 40 � 1 1 � � � �

dAe [10�4] 140 � 1.1 e) 3.2 e) 5.1 10 10 42
dAµ [10�4] 1060 � � � 5.4 54 13 270
dAt [10�4] 300 � 3.1 e) 5.2 e) 5.4 57 17 370
dAb [10�4] 220 � � � 5.1 6.4 9.9 40
dAc [10�4] 400 � � � 5.8 21 10 30
dAµ

FB [10�4] 770 � 0.54 4.6 � � � �
dAb

FB [10�4] 160 � 30 f ) 10 f ) � � � �
dAc

FB [10�4] 500 � 80 f ) 30 f ) � � � �

dRe [10�4] 24 � 3 2.4 5.4 11 4.2 27
dRµ [10�4] 16 � 0.5 1 2.8 11 2.2 27
dRt [10�4] 22 � 1 1.5 4.5 12 4.3 60
dRb [10�4] 31 � 2 2 7 11 7 18
dRc [10�4] 170 � 10 10 30 50 23 56

dRn [10�3] g) � � � � � � � 9.4
dRinv [10�3] g) � � 0.27 0.5 � � � �

63/75
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Higgs measurements: Circular lepton colliders
Table 20. Inputs used for CEPC and FCC-ee projections. All uncertainties are given as fractional 68% CL intervals and are
taken to be symmetric. The upper limits are given at 68% CL. A dash indicates the absence of a projection for the
corresponding channel.

FCC-ee240 FCC-ee365 CEPC
dsZH 0.005 0.009 0.005
d µZH,bb 0.003 0.005 0.0031
d µZH,cc 0.022 0.065 0.033
d µZH,gg 0.019 0.035 0.013
d µZH,WW 0.012 0.026 0.0098
d µZH,ZZ 0.044 0.12 0.051
d µZH,tt 0.009 0.018 0.0082
d µZH,gg 0.09 0.18 0.068
d µZH,µµ 0.19 0.40 0.17
d µZH,Zg � � 0.16
d µnnH,bb 0.031 0.009 0.030
d µnnH,cc � 0.10 �
d µnnH,gg � 0.045 �
d µnnH,ZZ � 0.10 �
d µnnH,tt � 0.08 �
d µnnH,gg � 0.22 �
BRinv <0.0015 <0.003 <0.0015

57/75
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Higgs measurements: Linear lepton colliders (ILC)
Table 22. Inputs used for ILC projections at the 500 and 1000 GeV energy stages and two polarisations. All uncertainties are
given as fractional 68% CL intervals and are taken to be symmetric. The upper limits are given at 68% CL.

ILC500
Polarization: e�: -80% e+: +30% e�: +80% e+: -30%
dsZH/sZH 0.017 0.017
d µZH,bb 0.010 0.010
d µZH,cc 0.071 0.071
d µZH,gg 0.059 0.059
d µZH,ZZ 0.14 0.14
d µZH,WW 0.030 0.030
d µZH,tt 0.024 0.024
d µZH,gg 0.19 0.19
d µZH,µµ 0.47 0.47
d µnnH,bb 0.0041 0.015
d µnnH,cc 0.035 0.14
d µnnH,gg 0.023 0.095
d µnnH,ZZ 0.047 0.19
d µnnH,WW 0.014 0.055
d µnnH,tt 0.039 0.16
d µnnH,gg 0.11 0.43
d µnnH,µµ 0.4 1.7
d µttH,bb 0.20 0.20
BRinv <0.0069 <0.0050
Direct constraint on Higgs self-interaction
dk3 0.27

ILC1000
Polarization: e�: -80% e+: +20% e�: +80% e+: -20%
d µnnH,bb 0.0032 0.010
d µnnH,cc 0.017 0.064
d µnnH,gg 0.013 0.047
d µnnH,ZZ 0.023 0.084
d µnnH,WW 0.0091 0.033
d µnnH,tt 0.017 0.064
d µnnH,gg 0.048 0.17
d µnnH,µµ 0.17 0.64
d µttH,bb 0.045 0.045
Direct constraint on Higgs self-interaction
dk3 0.10

59/75

Table 21. Inputs used for ILC projections at the 250 and 350 GeV energy stages and two polarisations. All uncertainties are
given as fractional 68% CL intervals and are taken to be symmetric. The upper limits are given at 68% CL.

ILC250
Polarization: e�: -80% e+: +30% e�: +80% e+: -30%
dsZH/sZH 0.011 0.011
d µZH,bb 0.0072 0.0072
d µZH,cc 0.044 0.044
d µZH,gg 0.037 0.037
d µZH,ZZ 0.095 0.095
d µZH,WW 0.024 0.024
d µZH,tt 0.017 0.017
d µZH,gg 0.18 0.18
d µZH,µµ 0.38 0.38
d µnnH,bb 0.043 0.17
BRinv <0.0027 <0.0021

ILC350
Polarization: e�: -80% e+: +30% e�: +80% e+: -30%
dsZH/sZH 0.025 0.042
d µZH,bb 0.021 0.036
d µZH,cc 0.15 0.26
d µZH,gg 0.11 0.20
d µZH,ZZ 0.34 0.59
d µZH,WW 0.076 0.13
d µZH,tt 0.054 0.094
d µZH,gg 0.53 0.92
d µZH,µµ 1.2 2.1
d µnnH,bb 0.025 0.18
d µnnH,cc 0.26 1.9
d µnnH,gg 0.10 0.75
d µnnH,ZZ 0.27 1.9
d µnnH,WW 0.078 0.57
d µnnH,tt 0.22 1.6
d µnnH,gg 0.61 4.2
d µnnH,µµ 2.2 16
BRinv <0.0096 <0.015

58/75
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Higgs measurements: Linear lepton colliders (CLIC)

Table 23. Inputs used for CLIC projections at the three energy stages and two polarisations. All uncertainties are given as
fractional 68% CL intervals and are taken to be symmetric. The upper limits are given at 68% CL.

CLIC380
Polarization: e�: -80% e+: 0% e�: +80% e+: 0%
dsZH,Z!ll/sZH,Z!ll 0.036 0.041
dsZH,Z!qq/sZH,Z!qq 0.017 0.020
d µZH,bb 0.0081 0.0092
d µZH,cc 0.13 0.15
d µZH,gg 0.057 0.065
d µZH,WW 0.051 0.057
d µZH,tt 0.059 0.066
d µnnH,bb 0.014 0.041
d µnnH,cc 0.19 0.57
d µnnH,gg 0.076 0.23
BRinv <0.0027 <0.003

CLIC1500
Polarization: e�: -80% e+: 0% e�: +80% e+: 0%
d µZH,bb 0.028 0.062
d µnnH,bb 0.0025 0.015
d µnnH,cc 0.039 0.24
d µnnH,gg 0.033 0.20
d µnnH,WW 0.0067 0.04
d µnnH,ZZ 0.036 0.22
d µnnH,gg 0.1 0.6
d µnnH,Zg 0.28 1.7
d µnnH,tt 0.028 0.17
d µnnH,µµ 0.24 1.5
d µeeH,bb 0.015 0.033
d µttH,bb 0.056 0.15

CLIC3000
Polarization: e�: -80% e+: 0% e�: +80% e+: 0%
d µZH,bb 0.045 0.10
d µnnH,bb 0.0017 0.01
d µnnH,cc 0.037 0.22
d µnnH,gg 0.023 0.14
d µnnH,WW 0.0033 0.02
d µnnH,ZZ 0.021 0.13
d µnnH,gg 0.05 0.3
d µnnH,Zg 0.16 0.95
d µnnH,tt 0.023 0.14
d µnnH,µµ 0.13 0.8
d µeeH,bb 0.016 0.036
Direct constraint on Higgs self-interaction
dk3 0.11
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Table 23. Inputs used for CLIC projections at the three energy stages and two polarisations. All uncertainties are given as
fractional 68% CL intervals and are taken to be symmetric. The upper limits are given at 68% CL.
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Higgs measurements: electron-proton colliders
Table 24. Inputs used for LHeC and FCC-eh projections. All uncertainties are given as fractional 68% CL intervals and are
taken to be symmetric.

Observable LHeC FCC-eh
d µWBF,bb 0.008 0.0025
d µWBF,cc 0.071 0.022
d µWBF,gg 0.058 0.018
d µZBF,bb 0.023 0.0065
d µWBF,WW 0.062 0.019
d µWBF,ZZ 0.120 0.038
d µWBF,tt 0.052 0.016
d µWBF,gg 0.15 0.046
d µZBF,cc 0.200 0.058
d µZBF,gg 0.160 0.047
d µZBF,WW 0.170 0.050
d µZBF,ZZ 0.350 0.100
d µZBF,tt 0.15 0.042
d µZBF,gg 0.42 0.120

Table 25. Left) Inputs used for FCC-hh. All uncertainties are given as fractional 68% CL intervals and are taken to be
symmetric. Right) Extra inputs used in the k fit studies.

FCC-hh
d µggF,4µ 0.019
d µggF,gg 0.015
d µggF,Zg 0.016
d µggF,µµ 0.012

d (BRµµ/BR4µ) 0.013
d (BRgg/BR2e2µ) 0.008
d (BRgg/BRµµ) 0.014
d (BRµµg/BRgg) 0.018

d (sbb
ttH/sbb

ttZ) 0.019
Invisible decays

BRinv <0.00013
Direct constraint on Higgs self-interaction

dk3 0.05

FCC-hh
(Extra inputs used in k fits)

d (sH!gg
WH /sZ!e+e�

WZ ) 0.014
d (sH!tt

WH /sZ!tt
WZ ) 0.016

d (sH!bb
WH /sZ!bb

WZ ) 0.011
d (sH!WW

WH /sH!gg
WH ) 0.015

Table 26. Inputs used for a low-energy FCC-hh running at 37.5 TeV (LE-FCC). All uncertainties are given as fractional 68%
CL intervals and are taken to be symmetric.

LE-FCC
d (BRµµ/BR4µ) 0.029
d (BRgg/BR2e2µ) 0.015
d (BRgg/BRµµ) 0.028
d (BRµµg/BRgg) 0.06

d (sbb
ttH/sbb

ttZ) 0.04-0.06
Direct constraint on Higgs self-interaction

dk3 0.15
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Higgs measurements: proton-proton colliders

Table 24. Inputs used for LHeC and FCC-eh projections. All uncertainties are given as fractional 68% CL intervals and are
taken to be symmetric.

Observable LHeC FCC-eh
d µWBF,bb 0.008 0.0025
d µWBF,cc 0.071 0.022
d µWBF,gg 0.058 0.018
d µZBF,bb 0.023 0.0065
d µWBF,WW 0.062 0.019
d µWBF,ZZ 0.120 0.038
d µWBF,tt 0.052 0.016
d µWBF,gg 0.15 0.046
d µZBF,cc 0.200 0.058
d µZBF,gg 0.160 0.047
d µZBF,WW 0.170 0.050
d µZBF,ZZ 0.350 0.100
d µZBF,tt 0.15 0.042
d µZBF,gg 0.42 0.120

Table 25. Left) Inputs used for FCC-hh. All uncertainties are given as fractional 68% CL intervals and are taken to be
symmetric. Right) Extra inputs used in the k fit studies.

FCC-hh
d µggF,4µ 0.019
d µggF,gg 0.015
d µggF,Zg 0.016
d µggF,µµ 0.012

d (BRµµ/BR4µ) 0.013
d (BRgg/BR2e2µ) 0.008
d (BRgg/BRµµ) 0.014
d (BRµµg/BRgg) 0.018

d (sbb
ttH/sbb

ttZ) 0.019
Invisible decays

BRinv <0.00013
Direct constraint on Higgs self-interaction

dk3 0.05

FCC-hh
(Extra inputs used in k fits)

d (sH!gg
WH /sZ!e+e�

WZ ) 0.014
d (sH!tt

WH /sZ!tt
WZ ) 0.016

d (sH!bb
WH /sZ!bb

WZ ) 0.011
d (sH!WW

WH /sH!gg
WH ) 0.015

Table 26. Inputs used for a low-energy FCC-hh running at 37.5 TeV (LE-FCC). All uncertainties are given as fractional 68%
CL intervals and are taken to be symmetric.

LE-FCC
d (BRµµ/BR4µ) 0.029
d (BRgg/BR2e2µ) 0.015
d (BRgg/BRµµ) 0.028
d (BRµµg/BRgg) 0.06

d (sbb
ttH/sbb

ttZ) 0.04-0.06
Direct constraint on Higgs self-interaction

dk3 0.15
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WZ ) 0.011
d (sH!WW

WH /sH!gg
WH ) 0.015

Table 26. Inputs used for a low-energy FCC-hh running at 37.5 TeV (LE-FCC). All uncertainties are given as fractional 68%
CL intervals and are taken to be symmetric.

LE-FCC
d (BRµµ/BR4µ) 0.029
d (BRgg/BR2e2µ) 0.015
d (BRgg/BRµµ) 0.028
d (BRµµg/BRgg) 0.06

d (sbb
ttH/sbb
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